Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject dimethyl sulfoxide

Corey and Chaykovsky had discovered that dimethyl sulfoxide is converted to methyl-sulfinyl carbanion upon treatment with sodium hydride114 and that this conjugate base of DMSO reacts with various electrophiles115. This finding has opened up various reactions with a-sulfmyl carbanions derived from sulfoxides, since the sulfinyl function can be removed either by thermolysis or by subjecting the compound to reductive desulfurization. Thus a-sulfmyl carbanions have become versatile synthetically useful reagents. [Pg.606]

Novi and coworkers124 have shown that the reaction of 2,3-bis(phenylsulfonyl)-l,4-dimethylbenzene with sodium benzenethiolate in dimethyl sulfoxide yields a mixture of substitution, cyclization and reduction products when subjected at room temperature to photostimulation by a sunlamp. These authors proposed a double chain mechanism (Scheme 17) to explain the observed products. This mechanism is supported by a set of carefully designed experiments125. The addition of PhSH, a good hydrogen atom donor, increases the percent of reduction products. When the substitution process can effectively compete with the two other processes, the increase in the relative yield of substitution (e.g., with five molar equivalents of benzenethiolate) parallels the decrease in those of both cyclization and reduction products. This suggests a common intermediate leading to the three different products. This intermediate could either be the radical anion formed by electron transfer to 2,3-bis(phenylsulfonyl)-l,4-dimethylbenzene or the a radical formed... [Pg.1072]

Phenol, the simplest and industrially more important phenolic compound, is a multifunctional monomer when considered as a substrate for oxidative polymerizations, and hence conventional polymerization catalysts afford insoluble macromolecular products with non-controlled structure. Phenol was subjected to oxidative polymerization using HRP or soybean peroxidase (SBP) as catalyst in an aqueous-dioxane mixture, yielding a polymer consisting of phenylene and oxyphenylene units (Scheme 19). The polymer showed low solubility it was partly soluble in DMF and dimethyl sulfoxide (DMSO) and insoluble in other common organic solvents. [Pg.229]

Arylazo-4-(3-ethoxycarbonylureido)furoxans 62, which were synthesized by the reactions of 4-amino-3-arylazo-furoxans with ethoxycarbonyl isocyanate, were subjected to cascade rearrangements under the action of potassium r/-butoxidc in dimethylformamide or by heating in dimethyl sulfoxide to form 4-amino-2-aryl-5-nitro-2//-l,2,3-triazoles 63 (Scheme 13) <2001MC230, 2003RCB1829>. [Pg.333]

Tomas et al. [281] have calculated the tautomeric equilibrium of 1,2,3-benzotriazole in the gas phase and compared their results to experimental data [282] derived from ultraviolet spectroscopy. Experiment suggests that 35 is about 4 kcal/mol more stable than 34 this result is consistent with calculations [281] at the MP2/6-31G level, which predict 35 to be 2.5 kcal/mol more stable than 34. The same level of theory predicts 33 to be 5.0 kcal/mol more stable than 32 in the parent triazole system. Although experimental data are available indicating 35 to be the dominant tautomer in CDCf and d6-dimethyl sulfoxide solutions [279, 283], this equilibrium does not appear to have been the subject of any modeling, continuum or otherwise. It may prove to be somewhat challenging, however. Tomas et al. point out that correlation effects favor 35 by about 5 kcal/mol at the MP2 level AMI, PM3, and HF calculations with moderate basis sets all predict... [Pg.44]

Kemp et al., 1978). The rate is slowest in an aqueous solution and is enhanced in aprotic and/or dipolar solvents. The rate augmentation of 106—108 is attainable in dipolar aprotic solvents such as dimethyl sulfoxide and hexamethylphosphoramide (HMPA). Interestingly, the decarboxylation rate of 4-hydroxybenzisoxazole-3-carboxylate [53], a substance which contains its own protic environment, is very slow and hardly subject to a solvent effect (1.3 x 10-6 s-1 in water and 8.9 x 10-6 s-1 in dimethylformamide Kemp et al., 1975). The result is consistent with the fact that hydrogen-bonding with solvent molecules suppresses the decarboxylation. [Pg.465]

Different extracts of Citrus were subjected to SPE on Cig cartridges to remove polar components. The retained flavonoids (mainly flavanones) were eluted with methanol-dimethyl sulfoxide, which enhanced solubility of hesperidin, diosmin, and diosmetin. Recoveries of eriocitrin, naringin, hesperidin, and tangeretin from spiked samples of mesocarp tissue exceeded 96%. Flavones were relatively abundant in the leaves. ... [Pg.10]

The method was used in studies of a fungal heterogalactan.150 The polysaccharide was subjected to successive tritylation, methylation, detritylation, p-toluenesulfonylation, reaction with sodium iodide, and, finally, reaction with sodium p-toluenesulfinate. The product was then treated with sodium methylsulfinyl carbanion in dimethyl sulfoxide, the product remethylated, and the polysaccharide material recovered by gel chromatography. The polymer was hydrolyzed, and the sugars in the hydrolyzate were analyzed, as the alditol acetates, by g.l.c.-m.s.1 The analysis revealed that —60% of the hexose residues that were unsubstituted at C-6 had been eliminated. As the product was still polymeric, it was concluded that these residues had constituted a part of side chains linked to a main chain of (1 — 6)-linked D-galactose residues. [Pg.227]

Protocols for preparing six environmental sample types prior to the Ames Salmonella assay were proposed at a recent panel discussion sponsored by the U.S. Environmental Protection Agency (USEPA) and the U.S. Army. Air particles, soil-sediment, and solid waste are extracted with dichloromethane, concentrated, and solvent exchanged into dimethyl sulfoxide (DMSO). Organics in water and waste water are absorbed onto XAD columns, then eluted with hexane-acetone, solvent reduced, and exchanged into DM SO. Nonaqueous liquids are assayed directly and as concentrates before they are solvent exchanged to DMSO. If bacterial toxicity or lack of dose response is observed in the Ames assay of extracts, the extracts are fractionated prior to solvent exchange. These are interim methods and have not been subjected to policy review of the USEPA or the U.S. Army. [Pg.25]

Dimethyl sulfoxide reductases from both R. sphaeroides and R. capsulatus have been the subject of several x-ray studies [112-115], In addition, extensive resonance Raman (RR) [119,125] and EXAFS studies [126,127] of both oxidized and reduced enzymes have been reported. Despite these studies, there is no single fully accepted picture for the active site of dmso reductase and its transformations during turnover. The following discussion outlines the structural features of the active site and the cofactor that are common to the various analyses as well as the current points of contention. [Pg.109]

To 1.17 g of (-)-7,8-difluoro-2,3-dihydro-3-hydroxymethyl-4H-[l,4] benzoxazine was added 2.77 g of thionyl chloride in pyridine. The reaction mixture was concentrated and the concentrate was subjected to column chromatography using 40 g of silica gel and eluted with chloroform to obtain 1.18 g of the reaction product as a colorless oily product. This product was dissolved in 30 ml of dimethyl sulfoxide, and 0.41 g of sodium borohydride was added thereto, followed by heating at 80-90°C for 1 hour. The reaction mixture was dissolved in 500 ml of benzene, washed with water to remove the dimethyl sulfoxide, dried over anhydrous sodium sulfate and concentrated under reduced pressure. The concentrate was subjected to column chromatography using 40 g of silica gel and eluted with benzene to obtain 0.80 g of (-)-7,8-difluoro-2,3-dihydro-3-methyl-4H-[l,4]benzoxazine as a colorless oily product [a]D25 = -9.6° (c = 2.17, CHCI3). Optical Purity >99% e.e. [Pg.2043]

No studies were located regarding cancer in humans after dermal exposure to barium. Dysplasia of the cervical epithelium was reportedly induced in a woman who had a barium chloride solution applied to her cervix (Ayre 1966). The use of dimethyl sulfoxide in combination with the barium chloride solution reportedly enhanced the ability of barium chloride to induce dysplasia. Dysplasia can be regarded as a potential precancerous lesion. The significance of the observations reported in this study are difficult to assess, since only one subject was exposed and because there have been no reports of similar findings in other human or animal studies. Also, the vehicle used was not specified in this study. [Pg.37]

A human study involving one adult female was performed by applying barium chloride, alone and in combination, with dimethyl sulfoxide to the cervical epithelium. Dimethyl sulfoxide significantly enhanced the ability of barium chloride to induce dysplasia with unusual cell formation in the cervical epithelium (Ayre 1966). The significance of this is difficult to determine since there was only one subject, there were no controls, and few details of the experiment were provided. [Pg.51]

An large number of pyrazines were subjected to X-ray crystallographic analysis. Those in the realm of metal complexes included [/i-2,3,5,6-tetrakis(2-pyridyl)pyrazine]bis[chloroplatinum(II)] bis[trichloro(dimethyl sulfoxide-ir5)platinate(II)] 152 <03AX(E)411>, tetraaqua-1,2,4,5-benzenetetracarboxylato(pyrazine)dicobalt(II) dihydrate <03AX(E)841>, polymeric... [Pg.370]

Fluorinated aromatic compounds. Finger and Kruse found that an aromatic chlorine or bromine atom activated by an o- or p-nitro group is subject to nucleophilic displacement by fluoride ipn on reaction with potassium fluoride in solvents such as succinonitrile, dimethyl formamide, or dimethyl sulfoxide. Unpublished work at Olin Mathieson Chemical Corporation indicates that best results are obtained with dimethyl sulfoxide as solvent and with potassium fluoride that has been finely ground (<100 mesh) and dried in a vacuum oven at 100° for at least 4 hrs. prior to use. In a typical case a mixture of p-nitrochlorobenzene, potassium fluoride, and dimethyl sulfoxide is stirred under reflux at 180° for 8-9 hrs., the cooled mixture... [Pg.470]


See other pages where Subject dimethyl sulfoxide is mentioned: [Pg.341]    [Pg.300]    [Pg.16]    [Pg.10]    [Pg.381]    [Pg.155]    [Pg.189]    [Pg.125]    [Pg.98]    [Pg.225]    [Pg.107]    [Pg.392]    [Pg.62]    [Pg.408]    [Pg.43]    [Pg.746]    [Pg.215]    [Pg.220]    [Pg.746]    [Pg.487]    [Pg.2248]    [Pg.126]    [Pg.526]    [Pg.263]    [Pg.312]    [Pg.33]    [Pg.301]    [Pg.301]    [Pg.20]    [Pg.64]    [Pg.341]    [Pg.59]    [Pg.746]    [Pg.36]   
See also in sourсe #XX -- [ Pg.187 ]




SEARCH



Dimethyl Subject

Subject sulfoxide

Sulfoxides Subject

Sulfoxides dimethyl

Sulfoxides dimethyl sulfoxide

© 2024 chempedia.info