Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrenic plastics acrylonitrile-styrene-acrylate

Odor and taste Polystyrene, styrene-acrylonitrile, polyethylene, acrylic, ABS, polysulfone, EVA, polyphenylene oxide, and many other TPs are examples of satisfactorily odor-free. FDA approvals are available for many of these plastics. Food packaging and refrigerating conditions will also eliminate certain plastics. There are TPs and melamine as well as urea compounds that are suitable for this service. [Pg.431]

The primary use of acrylonitrile is as the raw material for the manufacture of acrylic and modacrylic fibers. Other Major uses include the production of plastics (acrylonitrile-butadiene- styrene (ABS) and styrene-acrylonitrile (SAN), nitrile rubbers, nitrile barrier resins, adiponitrile and acrylamide (EPA 1984). [Pg.80]

Radiation Induced Reactions. Graft polymers have been prepared from poly(vinyl alcohol) by the irradiation of the polymer-monomer system and some other methods. The grafted side chains reported include acrylamide, acrylic acid, acrylonitrile, ethyl acrylate, ethylene, ethyl methacrylate, methyl methacrylate, styrene, vinyl acetate, vinyl chloride, vinyl pyridine and vinyl pyrrolidone (13). Poly(vinyl alcohols) with grafted methyl methacrylate and sometimes methyl acrylate have been studied as membranes for hemodialysis (14). Graft polymers consisting of 50% poly(vinyl alcohol), 25% poly(vinyl acetate) and 25% grafted ethylene oxide units can be used to prepare capsule cases for drugs which do not require any additional plasticizers (15). [Pg.84]

ISO 6402-1 2002 Plastics - Acrylonitrile-styrene-acrylate (ASA), acrylonitrile-(ethylene-propylene-diene)-styrene (AEPDS) and acrylonitrile-(chlorinated polyethylene)-styrene (ACS) moulding and extrusion materials - Part 1 Designation system and basis for... [Pg.307]

Plastics - acrylonitrile-styrene-acrylate (ASA), acrylonitrile-(ethyl-... [Pg.346]

L.K. Massey, "Acrylonitrile-styrene-acrylate," in The Effects ofUV Light and Weather on Plastics and Elastomers, chapter 4, pp. 47-56. William Andrew Publishing, Norwich, NY, 2nd edition, 2006. [Pg.347]

This study was therefore undertaken to prepare and evaluate acrylonitrile—butadiene-styrene (ABS) and methyl methacrylate-butadiene-styrene (MBS) polymers under similar conditions to determine whether replacement of acrylonitrile by methyl methacrylate could improve color stability during ultraviolet light aging, without detracting seriously from the good mechanical and thermal-mechanical properties of conventional ABS plastics. For purposes of control, the study also included briefer evaluation of commercial ABS, MBS, and acrylonitrile-butyl acrylate-styrene plastics. [Pg.242]

Weather-Resistance. For long-lived outdoor products, most plastics can be stabilized somewhat by opaque UV reflectors or at least dissolved UV stabilizers. For inherent resistance to sunlight, rain, and other components of weather, some preferred plastics include acrylonitrile/styrene/acrylic rubber, acry-lonitrile/styrene/ethylene-propylene rubber, polyvinyl chloride, fluoropolymers, and polymethyl methacrylate. [Pg.653]

Acrylonitrile end uses The primary use for acrylonitrile is in the manufacture of polyacrylonitrile (PAN) for acrylic fiber, which finds extensive uses in apparel, household furnishings, and industrial markets and applications, such as carbon fiber. Other end-use markets such as nitrile rubber, styrene-acrylonitrile (SAN) copolymer and acrylonitrile-butadi-ene-styrene (ABS) terpolymers have extensive commercial and industrial applications as tough, durable synthetic rubbers and engineering plastics. Acrylonitrile is also used to manufacture adipinitrile, which is the feedstock used to make Nylon 6,6. [Pg.47]

Two types of heating test are used to identify plastics. The bum or flame test requires a sample of approximately 2 X 4 cm (Braun, 1996). A Bunsen burner is adjusted to its lowest setting and forceps are used to hold the sample over the flame. The colour of the flame and behaviour of the sample are recorded including its ability to melt or drip and whether it self-extinguishes or continues to burn after removal from the flame. Acrylonitrile-butadiene-styrene, acrylics, cellulose acetate, cellulose nitrate, polystyrene, polyurethane and polyesters... [Pg.122]

Uses Plasticizer, emulsifier, and coalescent for acrylic latexes, styrene-acrylic floor polishes solvent for polymers, insecticides, veterinary medicine selective solvent (acet ene, acrylonitrile prod.) process solvent (phamraceuticals) specialty inks monomer for nylon-4 pharmaceutical solubilizer, intermediate synthesis of piracetam treatment of cerebral distress... [Pg.1328]

Diethylaminoethyl methacrylate acrylic monomer inhibitor Hydroquinone monomethyl ether acrylic plastic, food packaging Acrylamide/sodium acrylate copolymer Polymethyl methacrylate Styrene/acrylates/acrylonitrile copolymer Styrene/acrylates/ammonium methacrylate copolymer... [Pg.4789]

N nylon, PO polyolefin, elastomer, TPU thermoplastic urethane, GF glass fiber, NBR nitrile rubber, MAH maleic anhydride, EPR ethylene-propylene copolymer, l ionomer, M- mineral, ABS acrylonitrile-butadiene-styrene copolymer, PPE poly (phenylene ether), R reinforcement, PTFE poly(tetrafluoroethylene), CF° carbon fiber, PEBA poly(etherblockamide), S silicone, RIPP D reaction injection molding plastic, and ASA acrylate-styrene-acrylonitrile copolymer. [Pg.462]

ARP advanced reinforced plastic ASA Acrylonitrile-styrene-acrylate ASAP as soon as possible ASCII American Standard Code for Information Exchange ASM American Society for Metals ASME American Society of Mechanical Engineers ASNDT American Society for Non-Destructive Testing ASQ American Society for Quality ASQC American Society for Quality Control... [Pg.481]

Acrylonitrile is mainly used to produce acrylic fibers, resins, and elastomers. Copolymers of acrylonitrile with butadiene and styrene are the ABS resins and those with styrene are the styrene-acrylonitrile resins SAN that are important plastics. The 1998 U.S. production of acrylonitrile was approximately 3.1 billion pounds. Most of the production was used for ABS resins and acrylic and modacrylic fibers. Acrylonitrile is also a precursor for acrylic acid (by hydrolysis) and for adiponitrile (by an electrodimerization). [Pg.219]

Acrylic textile fibers are primarily polymers of acrylonitrile. It is copolymerized with styrene and butadiene to make moldable plastics known as SA and ABS resins, respectively. Solutia and others electrolytically dimerize it to adiponitrile, a compound used to make a nylon intermediate. Reaction with water produces a chemical (acrylamide), which is an intermediate for the production of polyacrylamide used in water treatment and oil recovery. [Pg.128]

The principal use of acrylonitrile since the early 1950s has been in the manufacture of so-called acrylic textile fibers. Acrylonitrile is first polymerized to polyacrylonitrile, which is then spun into fiber. The main feature of acrylic fibers is their wool-like characteristic, making them desirable for socks, sweaters, and other types of apparel. However, as with all synthetic textile fibers, fashion dictates the market and acrylic fibers currently seem to be in disfavor, so this outlet for acrylonitrile may be stagnant or declining. The other big uses for acrylonitrile are in copolymers, mainly with styrene. Such copolymers are very useful for the molding of plastic articles with very high impact resistance. [Pg.128]


See other pages where Styrenic plastics acrylonitrile-styrene-acrylate is mentioned: [Pg.186]    [Pg.149]    [Pg.77]    [Pg.292]    [Pg.186]    [Pg.186]    [Pg.83]    [Pg.84]    [Pg.415]    [Pg.145]    [Pg.946]    [Pg.315]    [Pg.77]    [Pg.43]    [Pg.251]    [Pg.70]    [Pg.76]    [Pg.65]    [Pg.35]    [Pg.654]    [Pg.10]    [Pg.54]    [Pg.869]    [Pg.151]   
See also in sourсe #XX -- [ Pg.60 , Pg.62 ]




SEARCH



Acrylate-styrene-acrylonitrile

Acrylic plastics

Acrylic styrene

STYRENE-ACRYLONITRILE

Styrenic plastic

© 2024 chempedia.info