Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrenes acids

Acrylonitrile-butadiene-styrene/acidic monomer, an elastomeric copolymer Cross-linked polyethylene Extra-strength molding compound... [Pg.2174]

Butadiene-styrene/acidic monomer, an elastomeric copolymer... [Pg.2174]

Prepared by epoxidation of styrene with per-oxyelhanoic acid. Reactions are similar to those of aliphatic epoxides (s e, e.g. ethylene oxide). Reacts with alcohols to give mono-ethers, e g. PhCH(0Me)CH20H. Phenols give resins. [Pg.374]

Oxidation, (a) Oxidise 1 g. of styrene with KMn04 and NajCOj (for details see oxidation of benzyl chloride, p. 391). Benzoic acid, m.p. 121 is obtained. Stilbene similarly gives benzoic acid, but requires longer heating—about 1 hour. [Pg.395]

Ethylenic compounds when oxidised with perbenzoic acid or perphthalic acid in chloroform solution yield epoxides (or oxiranes). This Is sometimes known as the Prileschajew epoxidation reaction. Thus pyrene affords styrene oxide (or 2-plienyloxirane) ... [Pg.893]

To illustrate the specific operations involved, the scheme below shows the first steps and the final detachment reaction of a peptide synthesis starting from the carboxyl terminal. N-Boc-glycine is attached to chloromethylated styrene-divinylbenzene copolymer resin. This polymer swells in organic solvents but is completely insoluble. ) Treatment with HCl in acetic acid removes the fert-butoxycarbonyl (Boc) group as isobutene and carbon dioxide. The resulting amine hydrochloride is neutralized with triethylamine in DMF. [Pg.232]

Acyl halides are intermediates of the carbonylations of alkenes and organic-halides. Decarbonylation of acyl halides as a reversible process of the carbo-nylation is possible with Pd catalyst. The decarbonylation of aliphatic acid chlorides proceeds with Pd(0) catalyst, such as Pd on carbon or PdC, at around 200 °C[109,753]. The product is a mixture of isomeric internal alkenes. For example, when decanoyl chloride is heated with PdCF at 200 C in a distillation flask, rapid evolution of CO and HCl stops after I h, during which time a mixture of nonene isomers was distilled off in a high yield. The decarbonylation of phenylpropionyl chloride (883) affords styrene (53%). In addition, l,5-diphenyl-l-penten-3-one (884) is obtained as a byproduct (10%). formed by the insertion of styrene into the acyl chloride. Formation of the latter supports the formation of acylpalladium species as an intermediate of the decarbonylation. Decarbonylation of the benzoyl chloride 885 can be carried out in good yields at 360 with Pd on carbon as a catalyst, yielding the aryl chloride 886[754]. [Pg.258]

Phenyl-1,4-hcxadicnc (122) is obtained as a major product by the codimerization of butadiene and styrene in the presence of a Lewis acid[110]. Pd(0)-catalyzed addition reaction of butadiene and aiiene (1 2) proceeds at 120 C to give a 3 1 mixture of trans- and c -2-methyl-3-methylene-l,5.7-octatriene (123)[lll]. [Pg.441]

When styrene is refluxed with aqueous sulfuric acid two styrene dimers are formed as the major products One of these styrene dimers is 1 3 diphenyl 1 butene the other is 1 methyl 3 phenyhndan Suggest a reasonable mechanism for the formation of each of these compounds... [Pg.518]

Perfluoroalkoxy (PEA) resin Styrene-maleic acid copolymer (SMC)... [Pg.1010]

Bio-Rex 70 2.4 0.70 Weakly acidic cation exchanger with car-boxylate groups on a macroreticular acrylic matrix for separation and fractionation of proteins, peptides, enzymes, and amines, particularly high molecular weight solutes. Does not denature proteins as do styrene-based resins. [Pg.1111]

ACRYLONITRHEPOLYTffiRS - SURVEY AND SAN (STYRENE-ACRYLONITRILECO-POLYTffiRS)] (Vol 1) 2-Hydroxyethylarsomc acid [65423-87-2]... [Pg.497]

By analogy, a great many of other functionalized styrenes, including carboxyHc acids, amino acids, Schiff bases, or specific compounds, eg, l-DOPA, have successfully been appHed as print templates. Moreover, it has also been shown that siUca gel can be imprinted with similar templates, and that the resulting gel has specific recognition sites determined by the print molecule (162—164). [Pg.189]

Acrylics. Acetone is converted via the intermediate acetone cyanohydrin to the monomer methyl methacrylate (MMA) [80-62-6]. The MMA is polymerized to poly(methyl methacrylate) (PMMA) to make the familiar clear acryUc sheet. PMMA is also used in mol ding and extmsion powders. Hydrolysis of acetone cyanohydrin gives methacrylic acid (MAA), a monomer which goes direcdy into acryUc latexes, carboxylated styrene—butadiene polymers, or ethylene—MAA ionomers. As part of the methacrylic stmcture, acetone is found in the following major end use products acryUc sheet mol ding resins, impact modifiers and processing aids, acryUc film, ABS and polyester resin modifiers, surface coatings, acryUc lacquers, emulsion polymers, petroleum chemicals, and various copolymers (see METHACRYLIC ACID AND DERIVATIVES METHACRYLIC POLYMERS). [Pg.99]

A number of methods such as ultrasonics (137), radiation (138), and chemical techniques (139—141), including the use of polymer radicals, polymer ions, and organometaUic initiators, have been used to prepare acrylonitrile block copolymers (142). Block comonomers include styrene, methyl acrylate, methyl methacrylate, vinyl chloride, vinyl acetate, 4-vinylpyridine, acryUc acid, and -butyl isocyanate. [Pg.197]

Acryhc stmctural adhesives have been modified by elastomers in order to obtain a phase-separated, toughened system. A significant contribution in this technology has been made in which acryhc adhesives were modified by the addition of chlorosulfonated polyethylene to obtain a phase-separated stmctural adhesive (11). Such adhesives also contain methyl methacrylate, glacial methacrylic acid, and cross-linkers such as ethylene glycol dimethacrylate [97-90-5]. The polymerization initiation system, which includes cumene hydroperoxide, N,1S7-dimethyl- -toluidine, and saccharin, can be apphed to the adherend surface as a primer, or it can be formulated as the second part of a two-part adhesive. Modification of cyanoacrylates using elastomers has also been attempted copolymers of acrylonitrile, butadiene, and styrene ethylene copolymers with methylacrylate or copolymers of methacrylates with butadiene and styrene have been used. However, because of the extreme reactivity of the monomer, modification of cyanoacrylate adhesives is very difficult and material purity is essential in order to be able to modify the cyanoacrylate without causing premature reaction. [Pg.233]

In polymers such as polystyrene that do not readily undergo charring, phosphoms-based flame retardants tend to be less effective, and such polymers are often flame retarded by antimony—halogen combinations (see Styrene). However, even in such noncharring polymers, phosphoms additives exhibit some activity that suggests at least one other mode of action. Phosphoms compounds may produce a barrier layer of polyphosphoric acid on the burning polymer (4,5). Phosphoms-based flame retardants are more effective in styrenic polymers blended with a char-forming polymer such as polyphenylene oxide or polycarbonate. [Pg.475]


See other pages where Styrenes acids is mentioned: [Pg.126]    [Pg.126]    [Pg.347]    [Pg.374]    [Pg.412]    [Pg.55]    [Pg.348]    [Pg.717]    [Pg.893]    [Pg.894]    [Pg.900]    [Pg.89]    [Pg.52]    [Pg.511]    [Pg.524]    [Pg.448]    [Pg.11]    [Pg.54]    [Pg.209]    [Pg.134]    [Pg.197]    [Pg.214]    [Pg.234]    [Pg.279]    [Pg.477]    [Pg.490]   
See also in sourсe #XX -- [ Pg.201 ]




SEARCH



© 2024 chempedia.info