Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene polybutadiene rubber blend

Cobalt complexes find various applications as additives for polymers. Thus cobalt phthalocyanine acts as a smoke retardant for styrene polymers,31 and the same effect in poly(vinyl chloride) is achieved with Co(acac)2, Co(acac)3, Co203 and CoC03.5 Co(acac)2 in presence of triphenyl phosphite or tri(4-methyl-6- f-butylphenyl) phosphite has been found to act as an antioxidant for polyenes.29 Both cobalt acetate and cobalt naphthenate stabilize polyesters against degradation,73 and the cobalt complex of the benzoic acid derivative (12) (see Section 66.4) acts as an antioxidant for butadiene polymers.46 Stabilization of poly(vinyl chloride)-polybutadiene rubber blends against UV light is provided by cobalt dicyclohexyldithiophosphinate (19).74 Here again, the precise structure does not appear to be known. [Pg.1019]

The term ABS was originally used as a general term to describe various blends and copolymers containing acrylonitrile, butadiene and styrene. Prominent among the earliest materials were physical blends of acrylonitrile-styrene copolymers (SAN) (which are glassy) and acrylonitrile-butadiene copolymers (which are rubbery). Such materials are now obsolete but are referred to briefly below, as Type 1 materials, since they do illustrate some basic principles. Today the term ABS usually refers to a product consisting of discrete cross-linked polybutadiene rubber particles that are grafted with SAN and embedded in a SAN matrix. [Pg.442]

Other polymers used in the PSA industry include synthetic polyisoprenes and polybutadienes, styrene-butadiene rubbers, butadiene-acrylonitrile rubbers, polychloroprenes, and some polyisobutylenes. With the exception of pure polyisobutylenes, these polymer backbones retain some unsaturation, which makes them susceptible to oxidation and UV degradation. The rubbers require compounding with tackifiers and, if desired, plasticizers or oils to make them tacky. To improve performance and to make them more processible, diene-based polymers are typically compounded with additional stabilizers, chemical crosslinkers, and solvents for coating. Emulsion polymerized styrene butadiene rubbers (SBRs) are a common basis for PSA formulation [121]. The tackified SBR PSAs show improved cohesive strength as the Mooney viscosity and percent bound styrene in the rubber increases. The peel performance typically is best with 24—40% bound styrene in the rubber. To increase adhesion to polar surfaces, carboxylated SBRs have been used for PSA formulation. Blends of SBR and natural rubber are commonly used to improve long-term stability of the adhesives. [Pg.510]

Polystyrene (PS) The volume of expanded polystyrene produced probably exceeds the volume production of all other plastics (excluding the polyurethanes) put together. At least half the weight of polystyrene produced is in the form of high impact polystyrene (HIPS)—a complex blend containing styrene-butadiene rubber or polybutadiene. [Pg.932]

Copolymers of styrene, especially with acrylonitrile, also attained increasing importance both in the unmodified form (30) and modified with rubber as ABS copolymers. The first products of this kind were blends of nitrile rubber and SAN (31). However, these only had mediocre mechanical properties because the interfacial compatibility was insufficient. The breakthrough came when nitrile rubber was replaced by a polybutadiene rubber which was grafted in emulsion with styrene and acrylonitrile... [Pg.270]

Another widely used copolymer is high impact polystyrene (PS-HI), which is formed by grafting polystyrene to polybutadiene. Again, if styrene and butadiene are randomly copolymerized, the resulting material is an elastomer called styrene-butadiene-rubber (SBR). Another classic example of copolymerization is the terpolymer acrylonitrile-butadiene-styrene (ABS). Polymer blends belong to another family of polymeric materials which are made by mixing or blending two or more polymers to enhance the physical properties of each individual component. Common polymer blends include PP-PC, PVC-ABS, PE-PTFE and PC-ABS. [Pg.18]

Other reported TG-MS applications concern polybutadiene [153], styrene-butadiene rubbers [153], gums [14], polyisoprenes [52], polyurethanes [144, 146, 147, 166], ABS [144], chlorosulphonated polyethylene elastomer [169, 170] and elastomer blends (NBR/SBR/ BR) [13]. Table 1.5 summarises the use of advanced TG-MS systems in elastomer analysis. [Pg.29]

As a result of its saturated polymer backbone, EPDM is more resistant to oxygen, ozone, UV and heat than the low-cost commodity polydiene rubbers, such as natural rubber (NR), polybutadiene rubber (BR) and styrene-butadiene rubber (SBR). Therefore, the main use of EPD(M) is in outdoor applications, such as automotive sealing systems, window seals and roof sheeting, and in under-the-hood applications, such as coolant hoses. The main drawback of EPDM is its poor resistance to swelling in apolar fluids such as oil, making it inferior to high-performance elastomers, such as fluoro, acrylate and silicone elastomers in that respect. Over the last decade thermoplastic vulcanisates, produced via dynamic vulcanisation of blends of polypropylene (PP) and EPDM, have been commercialised, combining thermoplastic processability with rubber elasticity [8, 9]. [Pg.208]

Polystyrene (PS) in its atactic and syndiotactic forms is a brittle thermoplastic, even in an orientated state [4]. To improve the toughness of aPS, impact modification has been practised for a long time, either by polymerizing the styrene in the presence of a polybutadiene rubber leading to high-impact polystyrene, commonly called HIPS, or by blending the polystyrene with multi-block copolymers, mainly of the styrene-butadiene-styrene (S-B-S) type. [Pg.411]

The samples of surface devulcanized reclaimed rubber made in this series of experiments were then compounded with a blend of virgin rubbers and cured. The blends were made by mixing 20 parts per 100 parts of rubber (phr) of the surface devulcanized reclaimed rubber samples with 70phr of Plioflex 1712 SBR, 30 phr of Budene 1254 polybutadiene rubber, about 9 phr of aromatic oil, about 70 phr of carbon black, about 2 phr of stearic acid, about 4 phr of wax, about 1 phr of accelerator, about 2 phr of zinc oxide, about 1.5 phr of sulfur, and about Iphr of antioxidant. The Plioflex 1712 has a bound styrene content of about 28.5% and was oil extended with about 37.5% of an... [Pg.2697]

A high-impact polystyrene that has much better optical clarity than that obtained by usual blending or grafting techniques can be prepared by our technique. Polymers containing 90-95% styrene grafted to polybutadiene rubber by use of 12 mmole RLi-TMEDA/100 gram polymer showed quite good optical clarity. [Pg.191]

Pentachlorthiofenol Renacit 7 RPA 6 USAF B-51. Peptizer for natural rubber, polyisoprene, styrene/butadiene rubber, polybutadiene, NBR, bu l, chloroprene and blends absorbed on clay, used as a peptizing agent facilitating open rnill and internal mixer mastication in rubber industry, Mildly toxic by ingestion severe eye irritant. Akrochem Chem. Co. Bayer AG Polysar. [Pg.475]

Polybutadiene rubbers generally have a higher resilience than natural rubbers at room temperature, which is important in rubber applications. On the other hand, these rubbers have poor tear resistance, poor tack, and poor tensile strength. For this reason polybutadiene rubbers are usually used in conjunction with other materials for optimum combination of properties. For example, they are blended with natural rubber in the manufacture of truck tires and with styrene-butadiene rubber (SBR) in the manufacture of automobile tires. [Pg.411]

Tread The wear resistance component of the tire in contact with the road. It must also provide traction, wet skid, and good cornering characteristics with minimum noise generation and low heat buildup. Tread components can consist of blends of natural rubber, polybutadiene (BR), and styrene-butadiene rubber (SBR), compounded with carbon black, silica, oils, and vulcanizing chemicals. [Pg.657]

In the same manner, blends containing (100% to 90%) polystyrene and (0% to 10%) styrene-butadiene rubber (SBR) exhibited improved impact properties after gamma irradiation at a dose of 100 kGy. FTIR provided evidence that irradiation produced a radical in the benzene ring of PS that could react with the double bond of polybutadiene producing a metasubstituted benzene (Figure 9.5). Hence, this chemical link between the two polymers gave rise to the increase in Izod impact strength parhcularly for 100 kGy y-irradiated 90/10 PS-SBR blend. [Pg.276]

Although ABS resins can potentially be produced in a variety of ways, there are only two main processes. In one of them acrylonitrile-styrene copolymer is blended with a butadiene-acrylonitrile rubber. In the other, interpolymers are formed of polybutadiene with styrene and acrylonitrile. [Pg.253]

Starting in the 1980 s, a number of governmental recycling policies created a demand for recycled thermoplastic olefin (TPO) for post-consumer applications. Since polystyrenes and TPOs are not miscible, polystyrene-TPO diblock copolymers are being developed to reduce the interfacial tension in PS/TPO blends. TPOs are tough materials with low stififiiess properties. If blended with polystyrene, they improve the toughness of polystyrenes. If compatibilized, the properties of PS/TPO should be similar to styrene-hydrogenated polybutadiene rubbers. [Pg.342]

Polybutadiene Automotive tires (blended with natural rubber and styrene butadiene rubber), golf ball skin, etc. [Pg.90]

Acrylonitrile butadiene styrene Made by blending acrylonitrile styrene copolymer and butadiene acrylonitrile rubber or inter-polymerizing polybutadiene with styrene and acrylonitrile. [Pg.1089]

Although the unmodified styrenics, viz., polystyrene, SAN, SMA, SMMA copolymers, exhibit good clarity, strength, and rigidity, they are invariably brittle for many applications. Hence, the rubber-modified styrenics such as HIPS and ABS, which combine a good level of impact strength with moderate heat resistance, have become more widely accepted in many molding and extrusion applications. Structurally, HIPS and ABS may themselves be considered as blends, since they contain >5 % polybutadiene rubber as a discrete phase, dispersed as 0.1-5 pm-size... [Pg.1763]

ABS resins are composed mainly of styrene (over 50 %) and varying amounts of acrylonitrile comonomer in the SAN polymer backbone and polybutadiene as a chemically grafted rubber dispersion. While the styrene units provide the rigidity and ease of processability, the acrylonitrile units contribute to the chemical resistance and heat stability. The polybutadiene rubber particles in ABS provide the toughness and impact strength. StmcturaUy, ABS itself is a two-phase polymer blend system with the dispersed polybutadiene rubber phase (0.1-1 pm) embedded in a continuous matrix of SAN copolymer. Thus, the composition of ABS resins can vary widely, allowing the production of several grades tailored for different end-use applications. [Pg.1769]


See other pages where Styrene polybutadiene rubber blend is mentioned: [Pg.111]    [Pg.31]    [Pg.21]    [Pg.200]    [Pg.272]    [Pg.31]    [Pg.182]    [Pg.589]    [Pg.1045]    [Pg.1052]    [Pg.454]    [Pg.39]    [Pg.751]    [Pg.149]    [Pg.150]    [Pg.94]    [Pg.316]    [Pg.404]    [Pg.529]    [Pg.586]    [Pg.1371]    [Pg.1778]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Blends rubber

Polybutadiene rubber

Polybutadiene styrene

Styrenic blends

© 2024 chempedia.info