Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene inhibitor

Naugard . [Uniroyal Uniroyal Chem. Ltd.] Antioxidant, metal derivator, processing aid, polymerization inhibitor, stabilizer for adhesives, thermoplastic and thermoset polymers styrene inhibitors. [Pg.245]

Mixture 1 Prepared as emulsion Distilled water = 67 ml Sodium dodecyl sulfate (SDS) = 0.5 g Styrene (inhibitor-free) = 41 ml t-Butyl hydroperoxide = 0.365 g... [Pg.192]

Semi-IPNs of NR and PS are prepared in two steps. First, NR is crosslinked with dicumyl peroxide (DCP). The vulcanized sheets of NR are allowed to swell S in styrene (inhibitor free) containing 1 % DCP. The swollen sheets are heated and then put in a vacuum to get rid of residual styrene monomer. Since the NR phase... [Pg.35]

Styrene (inhibitor free) Water (demineralized) Tricalcium phosphate Dodecylbenzene sulphonate Benzoyl peroxide... [Pg.74]

Inhibitors are characterized by inhibition constants which are defined as the ratio of the rate constant for transfer to inhibitor to the propagation constant for the monomer in analogy with Eq. (6.87) for chain transfer constants. For styrene at 50°C the inhibition constant of p-benzoquinone is 518, and that for O2 is 1.5 X 10. The Polymer Handbook (Ref. 3) is an excellent source for these and most other rate constants discussed in this chapter. [Pg.396]

Uses. About 35% of the isophthahc acid is used to prepare unsaturated polyester resins. These are condensation products of isophthahc acid, an unsaturated dibasic acid, most likely maleic anhydride, and a glycol such as propylene glycol. The polymer is dissolved in an inhibited vinyl monomer, usually styrene with a quinone inhibitor. When this viscous hquid is treated with a catalyst, heat or free-radical initiation causes cross-linking and sohdification. A range of properties is possible depending on the reactants used and their ratios (97). [Pg.494]

Copper naphthenate added to the resin at levels between 100—200 ppm effectively extends gel and cure characteristics, resulting in a reduction in exothermic heat (Eig. 7). Copper additives are used widely in commercial laminating resins to modify process exothermic effects. a-Methylstyrene [98-83-9] substituted for styrene at levels of 5—8% has also been used effectively in resins cured at above ambient temperatures. The inhibitor 2,5-di-/-butyIhydroquinone exerts significant exotherm suppression at levels of 200—400 ppm and is useful in high temperature mol ding processes. [Pg.319]

Up until 1986 the major use for 2-j -butylphenol was in the production of the herbicide, 2-j -butyl-4,6-dinitrophenol [88-85-7] which was used as a pre- and postemergent herbicide and as a defoHant for potatoes (30). The EPA banned its use in October 1986 based on a European study which showed that workers who came in contact with 2-j -butyl-4,6-dinitrophenol experienced an abnormally high rate of reproduction problems. Erance and the Netherlands followed with a ban in 1991. A significant volume of 2-j -butyl-4,6-dinitrophenol is used worldwide as a polymerization inhibitor in the production of styrene where it is added to the reboiler of the styrene distillation tower to prevent the formation of polystyrene (31). OSBP is used in the Par East as the carbamate derivative, 2-j -butylphenyl-Ai-methylcarbamate [3766-81-2] (BPMC) (32). BPMC is an insecticide used against leaf hoppers which affect the rice fields. [Pg.66]

The majority of 2-methylphenol is used in the production of novolak phenoHc resins. High purity novolaks based on 2-methylphenol are used in photoresist appHcations (37). Novolaks based on 2-methylphenol are also epoxidized with epichlorohydrin, yielding epoxy resins after dehydrohalogenation, which are used as encapsulating resins in the electronics industry. Other uses of 2-methylphenol include its conversion to a dinitro compound, 4,6-dinitro-2-methylphenol [534-52-1] (DNOC), which is used as a herbicide (38). DNOC is also used to a limited extent as a polymerization inhibitor in the production of styrene, but this use is expected to decline because of concerns about the toxicity of the dinitro derivative. [Pg.67]

Styrene is a colorless Hquid with an aromatic odor. Important physical properties of styrene are shown in Table 1 (1). Styrene is infinitely soluble in acetone, carbon tetrachloride, benzene, ether, / -heptane, and ethanol. Nearly all of the commercial styrene is consumed in polymerization and copolymerization processes. Common methods in plastics technology such as mass, suspension, solution, and emulsion polymerization can be used to manufacture polystyrene and styrene copolymers with different physical characteristics, but processes relating to the first two methods account for most of the styrene polymers currendy (ca 1996) being manufactured (2—8). Polymerization generally takes place by free-radical reactions initiated thermally or catalyticaHy. Polymerization occurs slowly even at ambient temperatures. It can be retarded by inhibitors. [Pg.476]

Figure 5 illustrates a typical distillation train in a styrene plant. Benzene and toluene by-products are recovered in the overhead of the benzene—toluene column. The bottoms from the benzene—toluene column are distilled in the ethylbenzene recycle column, where the separation of ethylbenzene and styrene is effected. The ethylbenzene, containing up to 3% styrene, is taken overhead and recycled to the dehydrogenation section. The bottoms, which contain styrene, by-products heavier than styrene, polymers, inhibitor, and up to 1000 ppm ethylbenzene, are pumped to the styrene finishing column. The overhead product from this column is purified styrene. The bottoms are further processed in a residue-finishing system to recover additional styrene from the residue, which consists of heavy by-products, polymers, and inhibitor. The residue is used as fuel. The residue-finishing system can be a flash evaporator or a small distillation column. This distillation sequence is used in the Fina-Badger process and the Dow process. [Pg.483]

The dehydrogenation of the mixture of m- and -ethyltoluenes is similar to that of ethylbenzene, but more dilution steam is required to prevent rapid coking on the catalyst. The recovery and purification of vinyltoluene monomer is considerably more difficult than for styrene owing to the high boiling point and high rate of thermal polymerization of the former and the complexity of the reactor effluent, which contains a large number of by-products. Pressures as low as 2.7 kPa (20 mm Hg) are used to keep distillation temperatures low even in the presence of polymerization inhibitor. The finished vinyltoluene monomer typically has an assay of 99.6%. [Pg.489]

Other miscellaneous compounds that have been used as inhibitors are sulfur and certain sulfur compounds (qv), picryUiydrazyl derivatives, carbon black, and a number of soluble transition-metal salts (151). Both inhibition and acceleration have been reported for styrene polymerized in the presence of oxygen. The complexity of this system has been clearly demonstrated (152). The key reaction is the alternating copolymerization of styrene with oxygen to produce a polyperoxide, which at above 100°C decomposes to initiating alkoxy radicals. Therefore, depending on the temperature, oxygen can inhibit or accelerate the rate of polymerization. [Pg.516]

Polyester Resins. Reinforced polyester resins are thermosets based on unsaturated polyesters from glycols and dibasic acids, either or both of which contain reactive double bonds. The ratio of saturated to unsaturated components controls the degree of cross-linking and thus the rigidity of the product (see Polyesters, unsaturated). Typically, the glycols and acids are esterified until a viscous Hquid results, to which an inhibitor is added to prevent premature gelation. Addition of the monomer, usually styrene, reduces the viscosity to an easily workable level. [Pg.328]

In styrene service, vapor may condense in flame arresters, and the liquid formed is low in inhibitor. Liquid may polymerize and plug off the arrester. Possible solutions include cleaning the arrester frequently or using a PVRV (pressure-vacuum relief valve). [Pg.2335]

Styrene is difficult to purify and keep pure. Usually contains added inhibitors (such as a trace of hydroquinone). Washed with aqueous NaOH to remove inhibitors (e.g. rert-butanol), then with water, dried for several hours with MgS04 and distd at 25° under reduced pressure in the presence of an inhibitor (such as 0.005% p-tert-butylcatechol). It can be stored at -78°. It can also be stored and kept anhydrous with Linde type 5A molecular sieves, CaH2, CaS04, BaO or sodium, being fractionally distd, and distd in a vacuum line just before use. Alternatively styrene (and its deuterated derivative) were passed through a neutral alumina column before use [Woon et al. J Am Chem Soc 108 7990 1986 Collman J Am Chem Soc 108 2588 1986]. [Pg.353]

The dehydrogenation reaction produces crude styrene which consists of approximately 37.0% styrene, 61% ethylbenzene and about 2% of aromatic hydrocarbon such as benzene and toluene with some tarry matter. The purification of the styrene is made rather difficult by the fact that the boiling point of styrene (145.2°C) is only 9°C higher than that of ethylbenzene and because of the strong tendency of styrene to polymerise at elevated temperatures. To achieve a successful distillation it is therefore necessary to provide suitable inhibitors for the styrene, to distil under a partial vacuum and to make use of specially designed distillation columns. [Pg.428]

In one process the crude styrene is first passed through a pot containing elemental sulphur, enough of which dissolves to become a polymerisation inhibitor. The benzene and toluene are then removed by distillation. The elthylbenzene is then separated from the styrene and tar by passing this through two distillation columns, each with top temperatures of about 50°C and bottom temperatures of 90°C under a vacuum of about 35 mmHg. The tar and sulphur are... [Pg.428]

When the resin temperature drops below the boiling point of the reactive diluent (usually styrene) the resin is pumped into a blending tank containing suitability inhibited diluent. It is common practice to employ a mixture of inhibitors in order to obtain a balance of properties in respect of colour, storage stability and gelation rate of catalysed resin. A typical system based on the above polyester fomulation would be ... [Pg.702]


See other pages where Styrene inhibitor is mentioned: [Pg.142]    [Pg.882]    [Pg.939]    [Pg.267]    [Pg.142]    [Pg.882]    [Pg.939]    [Pg.116]    [Pg.142]    [Pg.882]    [Pg.939]    [Pg.267]    [Pg.142]    [Pg.882]    [Pg.939]    [Pg.116]    [Pg.134]    [Pg.333]    [Pg.316]    [Pg.482]    [Pg.482]    [Pg.482]    [Pg.483]    [Pg.483]    [Pg.486]    [Pg.487]    [Pg.490]    [Pg.516]    [Pg.519]    [Pg.18]    [Pg.18]    [Pg.49]    [Pg.89]    [Pg.2339]    [Pg.66]    [Pg.710]    [Pg.229]   
See also in sourсe #XX -- [ Pg.107 ]




SEARCH



A Removal of the Inhibitor from Commercial Styrene

Inhibitors in styrene monomer

© 2024 chempedia.info