Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Styrene halogenation

It would be interesting to investigate the analogous reactions of the a-chloro-and a-iodo-styrenes. Halogen-exchange experiments might also prove useful in establishing a carbonium-ion intermediate -. ... [Pg.316]

Isoprene, paramethyl styrene, halogen is introduced in a post polymerization process... [Pg.600]

Styrene/a-methyl styrene Styrene/(halogenated styrene) Styrene/(halogenated styrene) a-methylstyrene/acrylonitrile a-methylstyrene/methacrylonitrile Butadiene/acrylonitrile Butadiene/acrylonitrile (methyl methacrylate)/(alkyl methacrylates) (methyl methacrylate)/esters (glycidyl methacrylate)/(ethyl acrylate) (ethylene terephthalate)/oxybenzoate (ethyl acrylate)/(4-vinyl pyridine) Ethylene/(vinyl acetate)... [Pg.106]

In polymers such as polystyrene that do not readily undergo charring, phosphoms-based flame retardants tend to be less effective, and such polymers are often flame retarded by antimony—halogen combinations (see Styrene). However, even in such noncharring polymers, phosphoms additives exhibit some activity that suggests at least one other mode of action. Phosphoms compounds may produce a barrier layer of polyphosphoric acid on the burning polymer (4,5). Phosphoms-based flame retardants are more effective in styrenic polymers blended with a char-forming polymer such as polyphenylene oxide or polycarbonate. [Pg.475]

Aqueous mineral acids react with BF to yield the hydrates of BF or the hydroxyfluoroboric acids, fluoroboric acid, or boric acid. Solution in aqueous alkali gives the soluble salts of the hydroxyfluoroboric acids, fluoroboric acids, or boric acid. Boron trifluoride, slightly soluble in many organic solvents including saturated hydrocarbons (qv), halogenated hydrocarbons, and aromatic compounds, easily polymerizes unsaturated compounds such as butylenes (qv), styrene (qv), or vinyl esters, as well as easily cleaved cycHc molecules such as tetrahydrofuran (see Furan derivatives). Other molecules containing electron-donating atoms such as O, S, N, P, etc, eg, alcohols, acids, amines, phosphines, and ethers, may dissolve BF to produce soluble adducts. [Pg.160]

Blends ofiPetramethylbisphenolA-PC (TMBPA-PC) with ModfiedPS or Styrene-Ac7ylonitrile(SAN) Copolymer. By installing halogen atoms on the aromatic rings of the PC-backbone, not only the resistance to heat softening can be increased (eg, TMBPA-PC = 203° C) (209), but also the compatibiUty with olefins. [Pg.160]

Additions of elemental halogens to unsaturated compounds are among the most common preparations of halogenated fluoroorganics. The transformations are usually fairly clean and proceed in good yields. Besides the numerous examples of halogen addition tofluoroalkenes and fluoroalkyl-substituted alkenes, additions to perfliioropropyl vinyl ether [2] and fluormated styrenes [7, 4] have been reported. Both ionic and free-radical processes occur (equations 1 and 2)... [Pg.364]

Condensation of normeperidine (81) with 3-chloropropan-l-ol affords the compound possessing the alcohol side chain (88). The hydroxyl is then converted to chlorine by means of thionyl chloride (89) displacement of the halogen by aniline yields pimino-dine (90). ° Condensation of the secondary amine, 81, with styrene oxide affords the alcohol, 91 removal of the benzyllic hydroxyl group by hydrogenolysis leads to pheneridlne (92). ... [Pg.301]

The standard polymers used for rubber linings consist of materials that are cross-linkable macromolecules which, on mixing with suitable reactants that form strong chemical bonds, change from a soft deformable substance into an elastic material. These polymers include natural rubber and its corresponding synthetic, c/s-polyisoprene, styrene-butadiene rubber, polychloroprene, butyl rubber, halogenated butyl rubbers, acrylonitrile-... [Pg.938]

Isobutylene-based elastomers include HR, the copolymer of isobutylene and isoprene, halogenated HR, star-branched versions of these polymers, and the terpolymer isobutylene-p-methylene styrene-bromo-p-methyl styrene (BIMS). A number of recent reviews on isobutylene-based elastomers are available [33-35]. [Pg.432]

Natural rubber Styrene-butadiene rubber Polybutadiene Polyisoprene Nitrile rubber Halogenated nitrile rubber Ethylene-propylene rubber EPDM... [Pg.440]

Femandez-Garcfa J.C., Orgiles-Barcelo, and A.C., Martm-Martmez J.M., 1991, Halogenation of styrene-butadiene rubber to improve its adhesion to polyurethanes, J. Adhes. Sci Technol, 5, 1065-1080. Oldfield D. and Symes T.E.F., 1983, Surface modification of elastomers for bonding, J. Adhes., 16, 77-96. Pastor-Bias M.M., Ferrandiz-Gomez T.P., and Martm-Martmez J.M., 2000, Chlorination of vulcanized styrene-butadiene rubber using solutions of trichloroisocyanuric acid in different solvents, J. Adhes. Sci. Technol, 14, 561-581. [Pg.772]

Radio-chemical graft copolymerization with good efficiency on halogenated polyolefins has been carried out by contacting the substrate with monomer (styrene) vapor [158,159]. Interpenetrating polymer network (IPN) could be made by grafting the monomers on preirradiated substrates... [Pg.870]

Bromo-j3-nitrostyrene and triphenylphosphine in dry benzene gave the phosphonium bromide (47). Using methanol as the solvent, the rearranged product (48) was formed, possibly via an azirine intermediate. Substituted -bromo-/3-nitrostyrenes yield the phosphoranes (49) and a phosphonium salt. When the aryl group is electron-donating, the reaction follows a different course to form the styrene (50) by initial attack of the phosphine on halogen. [Pg.10]

The phenylacetaldehyde reductase involved in the degradation of styrene is also able to accept long-chain aliphatic aldehydes and ketones, and halogenated acetophenones (Itoh et al. 1997). [Pg.164]

The same heterobifunctional initiator, 2-phenyl-2-[(2,2,6,6-tetramethy-piperidino)oxy] ethyl 2-bromo-2-methyl propanoate, was employed for the synthesis of PMMA-fo-PfBuA-fo-PS triblock terpolymers via the combination of ATRP and NMP [136]. Styrene was initially polymerized through the alkoxyamine function in bulk at 125 °C, leading to PS chains with bromine end groups. Subsequent addition of fBuA in the presence of CuBr/PMDETA provided the PS-fr-PfBuA diblock. Further addition of CuCl, to achieve halogen exchange and MMA yielded the desired triblock copolymer with... [Pg.76]

The substitution of the exo-methylene hydrogen atoms of MCP with halogens seems to favor the [2 + 2] cycloaddition reaction by stabilizing the intermediate diradical. Indeed, chloromethylenecyclopropane (96) reacts with acrylonitrile (519) to give a diastereomeric mixture of spirohexanes in good yield (Table 41, entry 2) [27], but was unreactive towards styrene and ds-stilbene. Anyway, it reacted with dienes (2,3-dimethylbutadiene, cyclopentadiene, cyc-lohexadiene, furan) exclusively in a [4 + 2] fashion (see Sect. 2.1.1) [27], while its... [Pg.81]

A similar H2 activation mechanism was proposed for the [Pd(NN S)Cl] complexes (5 in Scheme 4.5) in the semi-hydrogenation of phenylacetylene [45] after formation of the hydride 14 (Scheme 4.9), coordination of the alkyne occurs by displacement of the chloride ligand from Pd (15). The observed chemos-electivity (up to 96% to styrene) was indeed ascribed to the chloride anion, which can be removed from the coordination sphere by phenylacetylene, but not by the poorer coordinating styrene. This was substantiated by the lower che-moselectivities observed in the presence of halogen scavengers, or in the hydrogenations catalyzed by acetate complexes of formula [Pd(NN S)(OAc)]. Here, the acetate anion can be easily removed by either phenylacetylene or styrene. [Pg.85]

Other oxazoline containing ligands have been reported for the copper-catalyzed cyclopropanation reaction. These are outlined in Scheme 5 where the reaction of ethyl diazoacetate and styrene is compared. Conditions are more or less standard (halogenated solvent, 0°C to ambient temperature, CuOTf without reduction). For more information on these ligands, the reader is referred to the primary publications (49-54). [Pg.27]

There has been considerable argument over the mechanism of the polymerisation of styrene by perchloric acid in halogenated solvents in the temperature range ca. 30 °C to ca. -20 °C [1-11]. By spectroscopic and conductance measurements, Gandini and Plesch [1] could not detect any carbenium ions during the polymerisation this and other evidence led them to conclude that the dominant propagating species is the ester, polystyryl perchlorate (I), which is stabilised by an excess of styrene. [Pg.674]


See other pages where Styrene halogenation is mentioned: [Pg.134]    [Pg.1014]    [Pg.276]    [Pg.477]    [Pg.490]    [Pg.478]    [Pg.392]    [Pg.61]    [Pg.28]    [Pg.271]    [Pg.2461]    [Pg.363]    [Pg.61]    [Pg.1029]    [Pg.216]    [Pg.153]    [Pg.50]    [Pg.143]    [Pg.720]    [Pg.103]    [Pg.189]    [Pg.263]    [Pg.223]    [Pg.223]    [Pg.196]    [Pg.121]    [Pg.9]    [Pg.176]    [Pg.704]    [Pg.137]   
See also in sourсe #XX -- [ Pg.351 , Pg.352 ]




SEARCH



Halogen-based Flame Retardants for Styrenics

Halogen-based flame retardants, styrenic

Halogen-based flame retardants, styrenic polymers

Monomers halogenated styrenes

© 2024 chempedia.info