Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structures, different methods

The adaptation of zeolites to a particular purpose can be done by ion exchange and by different chemical and physical treatments. Physicochemical characteristics of zeolites often reflect the modifications introduced in the structure. Different methods are used to study the modifications and their correlations with sorption properties and catalytic activity. In this section G. T. Kerr reviews the chemistry involved in the thermal activation of NH4Y zeolites. [Pg.8]

The reactions analyzed here (and used to generate the initial radical pairs in the polymer media) can be separated into two distinct categories those that involve lysis of one molecule into two radicals (such as the Norrish Type 1, photo-Fries, and photo-Claisen reactions) and those that require bimolecular processes in which a part of one molecule is abstracted by another (e.g., H-atom abstractions from a phenol or an amine by the lowest energy triplet state of benzophenone). Each reaction produces either singlet or triplet radical pairs and, thus, allows the influence of spin multiplicity on radical pair reaction rates to be separated somewhat from other influences, such as the natures of the polymer matrices and the radical structures. Different methods for extracting rates of processes for the radicals from both static and dynamic data will be discussed. ... [Pg.282]

After having made the acquaintance of fuUerenes and of single- and multiwalled carbon nanotubes, the question arises on the existence of multiwalled fullerenes. Such carbon cages concentrically arranged one inside another are also called carbon onions. In comparison to other new carbon materials, they have by far been studied less. Chiefly this is because only small amounts of those are available. Still they represent an interesting structural variant of carbon. This chapter deals with their structure, different methods of preparation, and first results regarding their properties. [Pg.283]

The lead discovery process is depicted in Figure 10.4-4 and shows how the different methods are interconnected. A lead structure can be discovered by serendipity. In rational drug design all information available about a target serves to direct... [Pg.605]

The differentiation of bridged nonclassical from rapidly equilibrating classical carbocations based on NMR spectroscopy was difficult because NMR is a relatively slow physical method. We addressed this question in our work using estimated NMR shifts of the two structurally differing ions in comparison with model systems. Later, this task... [Pg.142]

In HyperChem, two different methods for the location of transition structures are available. Both arethecombinationsofseparate algorithms for the maximum energy search and quasi-Newton methods. The first method is the eigenvector-following method, and the second is the synchronous transit method. [Pg.308]

The precise geometrical data obtained by microwave spectroscopy allow conclusions regarding bond delocalization and hence aromaticity. For example, the microwave spectrum of thiazole has shown that the structure is very close to the average of the structures of thiophene and 1,3,4-thiadiazole, which indicates a similar trend in aromaticity. However, different methods have frequently given inconsistent results. [Pg.33]

The three-dimensional structure of protein molecules can be experimentally determined by two different methods, x-ray crystallography and NMR. The interaction of x-rays with electrons in molecules arranged in a crystal is used to obtain an electron-density map of the molecule, which can be interpreted in terms of an atomic model. Recent technical advances, such as powerful computers including graphics work stations, electronic area detectors, and... [Pg.391]

Different methods have been devised to represent proteins. A structure for porcine pancreatic procolipase is reported in the Protein Databank, as determined by NMR spectroscopy. Many such structures are reported without the hydrogen atoms, since their positions often cannot be determined experimentally. Most MM packages will add hydrogens. Figure 1.18 gives the hydrogen-free procolipase structure in line representation. [Pg.51]

The elaborate treatment for the H2O system is only possible beeause of its small size. For larger systems, less rigorous methods must be employed. Let us as a more realistic example consider a determination of the relative stability of the C4H6 isomers shown in Figure 11.15. There are experimental values for the first eight structures, which allows an evaluation of the performance of different methods. This in turn enables an estimate of how much trust should be put on the predicted values for 9, 10 and 11. [Pg.289]

Like propane, butanes are obtained from natural gas liquids and from refinery gas streams. The C4 acyclic paraffin consists of two isomers n-butane and isobutane (2-methylpropane). The physical as well as the chemical properties of the two isomers are quite different due to structural differences, for example, the vapor pressure (Reid method) for n-butane is 52 Ib/in., while it is 71 Ib/in. for isobutane. This makes the former a more favorable gasoline additive to adjust its vapor pressure. However, this use is declining in the United States due to new regulations that reduce the volatility of gasolines to 9 psi, primarily by removing butane. ... [Pg.31]

Using impedance data of TBN+ adsorption and back-integration,259,588 a more reliable value of <7 0 was found for a pc-Cu electrode574,576 (Table 11). Therefore, differences between the various EffM) values are caused by the different chemical states and surface structures of pc-Cu electrodes prepared by different methods (electrochemical or chemical polishing, mechanical cutting). Naumov etal,585 have observed these differences in the pzc of electroplated Cu films prepared in different ways. [Pg.90]

The equilibrium between a and b in Eq. (2) depends on the energies of both the structures. In Table 1 the relative energies of the ethyl cation in the structures a and b, calculated with different methods, are shown. [Pg.181]

Benzene has often been used as a test system for vibrational calculations using a variety of different electronic structure algorithms. The molecule exhibits regular hexagonal planar symmetry with six carbon atoms joined by a bonds and six remaining p-orbitals which overlap to form a delocalised n electron over all six carbon atoms. Table 1 shows comparisons of several different methods for benzene. [Pg.34]

The first report on the liquid crystalline properties of these compounds was published by Gray and Mosley [44] in 1976. The series of 4 -n-alkyl-4-cyanobiphenyls (CBn) have been widely studied by different methods due to their readily accessible nematic ranges around room temperature. The compounds have the phase sequences crystal-nematic-isotropic for CBS, CBIO, and monotropic nematic for CBS, CB4 crystal-smectic A-nematic-isotropic for CB9 crystal-smectic A-isotropic for CBll. The lower homologous CB2 is nonmesogenic. The general chemical structure of the compounds CBn is presented in Fig. 1. [Pg.142]

Nanotechnology is the branch of engineering that deals with the manipulation of individual atoms, molecules, and systems smaller than 100 nanometers. Two different methods are envisioned for nanotechnology to buUd nanostructured systems, components, and materials. One method is the top-down approach and the other method is called the bottom-up approach. In the top-down approach the idea is to miniaturize the macroscopic structures, components, and systems toward a nanoscale of the same. In the bottom-up approach the atoms and molecules constituting the building blocks are the starting point to build the desired nanostmcture [96-98]. [Pg.230]

The different growth modes discussed above have been exemplified also from structural studies. Froment and Lincot [247] used structural characterization methods, such as TEM and HRTEM, to determine the formation mechanisms and habits of chemically deposited CdS, ZnS, and CdSe thin film at the atomic level. These authors formulated reaction schemes for the different deposition mechanisms and considered that these should be distinguished to (a) atom-by-atom process, providing autoregulation in normal systems (b) aggregation of colloids (precipitation) ... [Pg.135]


See other pages where Structures, different methods is mentioned: [Pg.334]    [Pg.334]    [Pg.65]    [Pg.543]    [Pg.902]    [Pg.366]    [Pg.518]    [Pg.621]    [Pg.290]    [Pg.281]    [Pg.285]    [Pg.290]    [Pg.294]    [Pg.353]    [Pg.354]    [Pg.249]    [Pg.368]    [Pg.132]    [Pg.915]    [Pg.215]    [Pg.20]    [Pg.25]    [Pg.284]    [Pg.559]    [Pg.35]    [Pg.34]    [Pg.78]    [Pg.393]    [Pg.28]    [Pg.413]    [Pg.473]    [Pg.76]    [Pg.516]   


SEARCH



Difference method

Different Methods

Structural differences

Structural methods

Structure difference

© 2024 chempedia.info