Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure-Interaction Relationships

The changes in phase transition of artificial bilayers for example upon addition of drugs is only a parameter which allows an interpretation of strength and type of interaction with the studied phospholipid and is useful for the derivation of quantitative structure-interaction relationships. [Pg.226]

Besides the aforementioned descriptors, grid-based methods are frequently used in the field of QSAR quantitative structure-activity relationships) [50]. A molecule is placed in a box and for an orthogonal grid of points the interaction energy values between this molecule and another small molecule, such as water, are calculated. The grid map thus obtained characterizes the molecular shape, charge distribution, and hydrophobicity. [Pg.428]

Completely ah initio predictions can be more accurate than any experimental result currently available. This is only true of properties that depend on the behavior of isolated molecules. Colligative properties, which are due to the interaction between molecules, can be computed more reliably with methods based on thermodynamics, statistical mechanics, structure-activity relationships, or completely empirical group additivity methods. [Pg.121]

PW91 (Perdew, Wang 1991) a gradient corrected DFT method QCI (quadratic conhguration interaction) a correlated ah initio method QMC (quantum Monte Carlo) an explicitly correlated ah initio method QM/MM a technique in which orbital-based calculations and molecular mechanics calculations are combined into one calculation QSAR (quantitative structure-activity relationship) a technique for computing chemical properties, particularly as applied to biological activity QSPR (quantitative structure-property relationship) a technique for computing chemical properties... [Pg.367]

The structure/property relationships in materials subjected to shock-wave deformation is physically very difficult to conduct and complex to interpret due to the dynamic nature of the shock process and the very short time of the test. Due to these imposed constraints, most real-time shock-process measurements are limited to studying the interactions of the transmitted waves arrival at the free surface. To augment these in situ wave-profile measurements, shock-recovery techniques were developed in the late 1950s to assess experimentally the residual effects of shock-wave compression on materials. The object of soft-recovery experiments is to examine the terminal structure/property relationships of a material that has been subjected to a known uniaxial shock history, then returned to an ambient pressure... [Pg.192]

To illustrate the effect of radial release interactions on the structure/ property relationships in shock-loaded materials, experiments were conducted on copper shock loaded using several shock-recovery designs that yielded differences in es but all having been subjected to a 10 GPa, 1 fis pulse duration, shock process [13]. Compression specimens were sectioned from these soft recovery samples to measure the reload yield behavior, and examined in the transmission electron microscope (TEM) to study the substructure evolution. The substructure and yield strength of the bulk shock-loaded copper samples were found to depend on the amount of e, in the shock-recovered sample at a constant peak pressure and pulse duration. In Fig. 6.8 the quasi-static reload yield strength of the 10 GPa shock-loaded copper is observed to increase with increasing residual sample strain. [Pg.197]

Moreover, molecular modeling is one key method of a wide range of computer-assisted methods to analyze and predict relationships between protein sequence, 3D-molecular structure, and biological function (sequence-structure-function relationships). In molecular pharmacology these methods focus predominantly on analysis of interactions between different proteins, and between ligands (hormones, drugs) and proteins as well gaining information at the amino acid and even to atomic level. [Pg.777]

The aim of the second dimension depth is to consider protein 3D-stmctures to uncover structure-function relationships. Starting from the protein sequences, the steps in the depth dimension are structure prediction, homology modeling of protein structures, and the simulation of protein-protein interactions and ligand-complexes. [Pg.777]

In general the relevance of predictions of structure-function relationships based on molecular modeling and structural bioinformatics are threefold. First they can be used to answer the question of which partners (proteins) could interact. Second, predictions generate new hypotheses about binding site, about molecular mechanisms of activation and interaction between two partners, and can lead to new ideas for pharmacological intervention. The third aim is to use the predictions for structure-based drug design. [Pg.779]

The interest in this type of copolymers is still very strong due to their large volume applications as emulsifiers and stabilizers in many different systems 43,260,261). However, little is known about the structure-property relationships of these systems 262) and the specific interactions of different segments in these copolymers with other components in a particular multicomponent system. Sometimes, minor chemical modifications in the PDMS-PEO copolymer backbone structures can lead to dramatic changes in its properties, e.g. from a foam stabilizer to an antifoam. Therefore, recent studies are usually directed towards the modification of polymer structures and block lengths in order to optimize the overall structure-property-performance characteristics of these systems 262). [Pg.46]

Snyder NJ, Tabas LB, Berry DM, Duckworth DC, Spry DO and Dantzig AH. Structure-activity relationship of carbacephalosporins and cephalosporins antibacterial activity and interaction with the intestinal proton-dependent dipeptide transport carrier of Caco-2 cells. Antimicrob Agents Chemother 1997 41 1649-57. [Pg.511]

Purely electrical models of the heart are only a start. Combined electromechanical finite-element models of the heart take into account the close relationship that exists between the electrical and mechanical properties of individual heart cells. The mechanical operation of the heart is also influenced by the fluid-structure interactions between the blood and the blood vessels, heart walls, and valves. All of these interactions would need to be included in a complete description of heart contraction. [Pg.160]

Shi DF et al. (2001) Quadruplex-interactive agents as telomerase inhibitors synthesis of porphyrins and structure-activity relationship for the inhibition of telomerase. J Med Chem 44(26) 4509-4523... [Pg.94]

Abstract Protoberberine alkaloids and related compounds represent an important class of molecules and have attracted recent attention for their various pharmacological activities. This chapter deals with the physicochemical properties of several isoquinoline alkaloids (berberine, palmatine and coralyne) and many of their derivatives under various environmental conditions. The interaction of these compounds with polymorphic DNA structures (B-form, Z-form, H -form, protonated form, triple helical form and quadruplex form) and polymorphic RNA structures (A-form, protonated form, triple helical form and quadruplex form) reported by several research groups, employing various analytical techniques such as spectrophotometry, spectrofluorimetry, circular dichro-ism, NMR spectroscopy, viscometry as well as molecular modelling and thermodynamic analysis to elucidate their mode and mechanism of action for structure-activity relationships, are also presented. [Pg.156]


See other pages where Structure-Interaction Relationships is mentioned: [Pg.51]    [Pg.134]    [Pg.263]    [Pg.263]    [Pg.3717]    [Pg.330]    [Pg.303]    [Pg.51]    [Pg.134]    [Pg.263]    [Pg.263]    [Pg.3717]    [Pg.330]    [Pg.303]    [Pg.41]    [Pg.718]    [Pg.237]    [Pg.272]    [Pg.557]    [Pg.323]    [Pg.431]    [Pg.1020]    [Pg.148]    [Pg.120]    [Pg.63]    [Pg.383]    [Pg.67]    [Pg.431]    [Pg.209]    [Pg.338]    [Pg.124]    [Pg.302]    [Pg.498]    [Pg.50]    [Pg.60]    [Pg.382]    [Pg.144]    [Pg.157]    [Pg.775]    [Pg.44]    [Pg.46]    [Pg.128]   


SEARCH



Quantitative structure-property relationships interactions

Structure-Activity Relationships in Modeling Nucleic Acid Ligand Interactions

Structure-activity relationship nucleic acid ligand interactions

Structure-activity relationships drug-receptor interactions

Structures interaction

Structure—reactivity relationships in radical interactions

© 2024 chempedia.info