Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure butane isomerization

The following facts are the basis for butene isomerization (I) There is a basic similarity in the composition of alkylates produced from all four butene isomers. (2) Alkylate molecules, once formed, are relatively stable under alkylation conditions and do not isomerize to any appreciable extent alkylate fractions having the same carbon number ore not equilibrated (see Table I). (3) Thermodynamic equilibrium between the butene olefins highly favors isobutene formation at alkylation temperatures. (4) Normal butenes p>roduce only small and variable amounts of normal butane, thus indicating only a small and variable amount of chain initiation from normal butenes. Yet the alkylate composition shows a high concentration of trimethylpentanes and a low concentration of dimethylhexanes. (5) A few of the octane isomers can be explai.ned only by isomerization of the eight-carbon skeletal structure this isomerization occurs while isobutene dimer is in ionic form. For example, 2,3,3- and 2,3,4-trimethylpentanes... [Pg.31]

Structure of ZrOa-SO/ samples prepared by various methods and their catalytic properties in n-butane isomerization... [Pg.358]

Solid acid catalysts play an important role in hydrocarbon conversion reactions in the chemical and petroleum industries [1,2]. Many kinds of solid acids have been found their acidic properties on catalyst surfaces, their catalytic action, and the structure of acid sites have been elucidated for a long time, and those results have been reviewed by Arata [3]. The strong acidity of zirconia-supported sulfate has attracted much attention because of its ability to catalyze many reactions such as cracking, alkylation, and isomerization. Sulfated zirconia incorporating Fe and Mn has been shown to be highly active for butane isomerization, catalyzing the reaction even at room temperature [4]. [Pg.377]

Recent results are presented illustrating principal mechanistic differences between alkane isomerization in liquid acids and over solid acids, including bifunctional catalysts. Isotopic labeling shows that butane isomerization over solid acids proceeds preferentially as a bimolecular process, i.e. via a Cg intermediate, which subsequently decomposes, preferentially into two iso-Cn structures. Bronsted acid sites in zeolites form chemical bonds with metal clusters. The resulting metal-proton adducts function as "collapsed bifunctional sites". [Pg.41]

Zirconia particles were incorporated in the ordered mesoporous material SBA-15 by impregnating the calcined host material with zirconia precursor solutions and subsequent heat treatments. The materials were characterized by XRD, N2-Sorption, TEM and EDX. Different analytical techniques indicate the incorporation of zirconia clusters inside the host structure with particle sizes between 3 and 5 nm, and the existence of a small amount of zirconia particles outside the host structure. According to the XRD pattern, the SBA-15 support stabilizes the tetragonal phase and the particle size up to a temperature of 1373 K. The materials were additionally sulfated by standard methods and showed in contrast to sulfated bulk zirconia a lower catal) ic activity in the -butane isomerization. [Pg.315]

Figure 7.21. Structure of the oxyallyl radical, and the ORTEP representations from X-ray of the bicyclobutanones 45 and 46. Box Schematic representation of the stretch-hond isomerism of bicyclo[1.1.0]butane. (Adapted from ref. 117.)... Figure 7.21. Structure of the oxyallyl radical, and the ORTEP representations from X-ray of the bicyclobutanones 45 and 46. Box Schematic representation of the stretch-hond isomerism of bicyclo[1.1.0]butane. (Adapted from ref. 117.)...
The relative rate of isobutane isomerization has been shown by Anderson and Avery 24) to be markedly increased by using a (111) platinum film surface. On the other hand, this did not occur with n-butane, nor did it occur with either iso- or n-butane over a (100) platinum surface (cf. Table II). A triangular array of adjacent sites on a (111) platinum surface can be readily fitted by an adsorbed isohydrocarbon, and this structure also fits to allow the carbon orbitals to be directed normally to the surface. On simple geometric grounds, this adsorbed structure is specific to the (111)/... [Pg.35]

The conversion of a chemical with a given molecular formula to another compound with the same molecular formula but a different molecular structure, such as from a straight-chain to a branched-chain hydrocarbon or an alicyclic to an aromatic hydrocarbon. Examples include the isomerization of ethylene oxide to acetaldehyde (both C2H40) and butane to isobutane (both C4H10). [Pg.152]

The molecular formulas just shown for 10 alkane hydrocarbon molecules represent the proportions of carbon to hydrogen in each molecule. These formulas do not reveal much about their structures, but rather indicate the proportions of each element in their molecules. Each molecule may have several different structures while still having the same formula. Molecules with different structures but the same formulas are called isomers. For example, n-butane is formed in a straight chain, but in an isomer of butane, the CH branches off in the middle of the straight chain. Another example is ethane, whose isomeric structure can be depicted as H,C H,C-CH,. The name for the normal structure sometimes uses n in front of the name. [Pg.21]

In general, things are simpler than that, much to our advantage. Within the limits set by the precision of the present estimates, structural features like the chair, boat, or twist-boat conformations of cyclohexane rings, as well as the butane-gawc/ze effects or the cis-tmns isomerism of ethylenic compounds leave no recognizable distinctive trace in zero-point plus heat content energies. Indeed, whatever residual, presently... [Pg.110]

Organic compounds show a widespread occurrence of isomers, which are compounds having the same molecular formula but different structural formulas, and therefore possessing different properties. This phenomenon of isomerism is exemplified by isobutane and -butane [Fig. l-l(a) and (b)]. The number of isomers increases as the number of atoms in the organic molecule increases. [Pg.3]

Butenes or butylenes are hydrocarbon alkenes that exist as four different isomers. Each isomer is a flammable gas at normal room temperature and one atmosphere pressure, but their boiling points indicate that butenes can be condensed at low ambient temperatures and/or increase pressure similar to propane and butane. The 2 designation in the names indicates the position of the double bond. The cis and trans labels indicate geometric isomerism. Geometric isomers are molecules that have similar atoms and bonds but different spatial arrangement of atoms. The structures indicate that three of the butenes are normal butenes, n-butenes, but that methylpropene is branched. Methylpropene is also called isobutene or isobutylene. Isobutenes are more reactive than n-butenes, and reaction mechanisms involving isobutenes differ from those of normal butenes. [Pg.49]

Equilibria. The equilibrium distributions of butane, pentane, and hexane isomers have been experimentally determined (5, 16) and are diagrammed in Figure 2. In each case, lower temperatures favor the more highly branched structures. At the approximately 200° F. temperature usually employed for isomerization, the butane equilibrium mixture contains about 75% isobutane. That for pentane contains about 85% isopentane.. In the case of hexane, the equilibrium product contains about 50% neohexane and has a Motor octane rating of about 82. In all cases, of course, the yield of the desired isomers can be increased by fractionation and recycle. [Pg.113]

In addition to the locations of the double bonds, another difference of alkenes is the molecule s inability to rotate at the double bond. With alkanes, when substituent groups attach to a carbon, the molecule can rotate around the C-C bonds in response to electron-electron repulsions. Because the double bond in the alkene is composed of both sigma and pi bonds, the molecule can t rotate around the double bond (see Chapter 6). What this means for alkenes is that the molecule can have different structural orientations around the double bond. These different orientations allow a new kind of isomerism, known as geometrical isomerism. When the non-hydrogen parts of the molecule are on the same side of the molecule, the term cis- is placed in front of the name. When the non-hydrogen parts are placed on opposite sides of the molecule, the term trans- is placed in front of the name. In the previous section, you saw that the alkane butane has only two isomers. Because of geometrical isomerism, butene has four isomers, shown in Figure 19.12. [Pg.466]

Summary Rules for Naming Alkanes 94 3-4 Physical Properties of Alkanes 95 3-5 Uses and Sources of Alkanes 97 3-6 Reactions of Alkanes 99 3-7 Structure and Conformations of Alkanes 100 3-8 Conformations of Butane 104 3-9 Conformations of Higher Alkanes 106 3-10 Cycloalkanes 107 3-11 Cis-trans Isomerism in Cycloalkanes 109 3-12 Stabilities of Cycloalkanes Ring Strain 109 3-13 Cyclohexane Conformations 113... [Pg.7]

Butane and all succeeding members of the alkanes exhibit structural isomerism. Recall from Section 20.4 that structural isomerism occurs when two molecules have the same atoms but different bonds. For example, butane can exist as a straight-chain molecule (normal butane, or -butane) or with a branched-chain structure (called isobutane), as shown in Fig. 22.4. Because of their different structures, these molecules exhibit different properties. For example, the boiling point of -butane is -0.5°C, whereas that of isobutane is — 12°C. [Pg.1015]

Isomerism. In the case of methane, ethane, and propane, only one structure can be written that satisfies the requirements of the parafSn class of hydrocarbons. This is not so for butane and the higher members of this series For example, two structures are possible for butane, both of which have the same molecular formula. Both formulas... [Pg.202]

MO calculations have been carried out on the isomerization of cyclopropane to propene, and the MNDO method has been used to study the reaction pathway and to optimize the structure of reactant, transition structure, and product of the ring opening reaction of bicyclo[1.1.0]butane. Various methods have been employed to estimate the rate constants for ring opening of the 2-cyclopropyl-2-propyl radical. 1-Acceptor-1-sulfenyl-substituted 2-vinylcyclopropanes of the type (430) have been found to afford 6-sulfenyl-a,jS y, -unsaturated carboxylic esters and nitriles (431) upon treatment with acid, by a process which involves C(l)—C(2) bond fission and a novel 1,5-sulfenyl rearrangement (see Scheme 110). It has been shown that the benzophenone-sensitized photolysis of vinyl norcaradiene derivatives, such as 5-(2-methylprop-l-enyl)-3-oxatricyclo[4.4.0.0 ]deca-7,9-dien-4-ones (432), results in the regioselective cleavage of only one of the cyclopropyl c-bonds to afford isochroman-3-one derivatives (433). It has been reported that the major product obtained from the reaction of structurally diverse a-diazo ketones with an electron-rich alkene in the... [Pg.577]


See other pages where Structure butane isomerization is mentioned: [Pg.31]    [Pg.94]    [Pg.247]    [Pg.358]    [Pg.360]    [Pg.954]    [Pg.96]    [Pg.85]    [Pg.243]    [Pg.106]    [Pg.111]    [Pg.15]    [Pg.226]    [Pg.889]    [Pg.577]    [Pg.577]    [Pg.156]    [Pg.205]    [Pg.196]    [Pg.226]    [Pg.250]    [Pg.284]    [Pg.56]    [Pg.243]    [Pg.135]    [Pg.119]    [Pg.321]    [Pg.343]    [Pg.335]   
See also in sourсe #XX -- [ Pg.361 , Pg.362 ]




SEARCH



Butane structure

Isomerism butanes

Isomerism structural

Structural isomerization

© 2024 chempedia.info