Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structural materials transmission electron microscopy

Alternatives to XRD include transmission electron microscopy (TEM) and diffraction, Low-Energy and Reflection High-Energy Electron Diffraction (LEED and RHEED), extended X-ray Absorption Fine Structure (EXAFS), and neutron diffraction. LEED and RHEED are limited to surfaces and do not probe the bulk of thin films. The elemental sensitivity in neutron diffraction is quite different from XRD, but neutron sources are much weaker than X-ray sources. Neutrons are, however, sensitive to magnetic moments. If adequately large specimens are available, neutron diffraction is a good alternative for low-Z materials and for materials where the magnetic structure is of interest. [Pg.199]

High-resolution transmission electron microscopy (HREM) is the technique best suited for the structural characterization of nanometer-sized graphitic particles. In-situ processing of fullerene-related structures may be performed, and it has been shown that carbonaceous materials transform themselves into quasi-spherical onion-like graphitic particles under the effect of intense electron irradiation[l 1],... [Pg.163]

Four different material probes were used to characterize the shock-treated and shock-synthesized products. Of these, magnetization provided the most sensitive measure of yield, while x-ray diffraction provided the most explicit structural data. Mossbauer spectroscopy provided direct critical atomic level data, whereas transmission electron microscopy provided key information on shock-modified, but unreacted reactant mixtures. The results of determinations of product yield and identification of product are summarized in Fig. 8.2. What is shown in the figure is the location of pressure, mean-bulk temperature locations at which synthesis experiments were carried out. Beside each point are the measures of product yield as determined from the three probes. The yields vary from 1% to 75 % depending on the shock conditions. From a structural point of view a surprising result is that the product composition is apparently not changed with various shock conditions. The same product is apparently obtained under all conditions only the yield is changed. [Pg.182]

Multi-walled CNTs (MWCNTs) are produced by arc discharge between graphite electrodes but other carbonaceous materials are always formed simultaneously. The main by-product, nanoparticles, can be removed utilizing the difference in oxidation reaction rates between CNTs and nanoparticles [9]. Then, it was reported that CNTs can be aligned by dispersion in a polymer resin matrix [10]. However, the parameters of CNTs are uncontrollable, such as the diameter, length, chirality and so on, at present. Furthermore, although the CNTs are observed like cylinders by transmission electron microscopy (TEM), some reports have pointed out the possibility of non-cylindrical structures and the existence of defects [11-14]. [Pg.76]

In this paper, the bulk material was obtained by impregnation of the silica host with GFP solution and nanosised by sonication, preserving the features of both the biomolecule and the mesoporous structure. An exhaustive physical chemical characterisation of the nanosized materials was performed by structural (X-Ray Diffraction, Transmission Electron Microscopy), volumetric and optical (photoluminescence spectroscopy) techniques. [Pg.12]

Microporous nanoparticles with ordered zeolitic structure such as Ti-Beta are used for incorporation into walls or deposition into pores of mesoporous materials to form the micro/mesoporous composite materials [1-3], Microporous particles need to be small enough to be successfully incorporated in the composite structure. This means that the zeolite synthesis has to be stopped as soon as the particles exhibit ordered zeolitic structure. To study the growth of Ti-Beta particles we used 29Si solid-state and liquid-state NMR spectroscopy combined with x-ray powder diffraction (XRPD) and high-resolution transmission electron microscopy (HRTEM). With these techniques we monitored zeolite formation from the initial precursor gel to the final Ti-Beta product. [Pg.65]

Transmission electron microscopy (TEM) is a powerful and mature microstructural characterization technique. The principles and applications of TEM have been described in many books [16 20]. The image formation in TEM is similar to that in optical microscopy, but the resolution of TEM is far superior to that of an optical microscope due to the enormous differences in the wavelengths of the sources used in these two microscopes. Today, most TEMs can be routinely operated at a resolution better than 0.2 nm, which provides the desired microstructural information about ultrathin layers and their interfaces in OLEDs. Electron beams can be focused to nanometer size, so nanochemical analysis of materials can be performed [21]. These unique abilities to provide structural and chemical information down to atomic-nanometer dimensions make it an indispensable technique in OLED development. However, TEM specimens need to be very thin to make them transparent to electrons. This is one of the most formidable obstacles in using TEM in this field. Current versions of OLEDs are composed of hard glass substrates, soft organic materials, and metal layers. Conventional TEM sample preparation techniques are no longer suitable for these samples [22-24], Recently, these difficulties have been overcome by using the advanced dual beam (DB) microscopy technique, which will be discussed later. [Pg.618]

The present volume contains the lectures given during this ASI and covers almost all theoretical and practical aspects of advanced transmission electron microscopy techniques and crystallographic methods that are relevant for determining structures of organic and inorganic materials. Moreover a number of extended abstracts on the presented posters during this ASI have been added to this volume. [Pg.2]

In chemistry, we are often interested in the bulk of the material, and for this purpose we must view the structures with a probe that penetrates through the object. Transmission electron microscopy is ideal for this. The 3D structure of a transparent object is much more complex than the surface, which can be considered as a 2D object, although it often is not at all flat. In the case of a crystal, the object may be hundreds of atoms thick, resulting in a massive overlap of atoms in any direction we chose to look at the crystal from. It is easily realized that even three orthogonal views are not sufficient for resolving all overlapping reflections, unless the structure is very simple. The larger the unit cell is, the more projections are needed in order to obtain a structure with all atoms resolved. [Pg.304]

Transmission Electron Microscopy (TEM) is a standard laboratory technique. TEM is indispensable tool for high resolution observation of very fine structures on material smface. The resolution of TEM is abou one order of magnitude better than that of SEM. It corresponds to 1 nm. There exist also high resolution transmission microscopes (HRTEM) with a resolution down to 0.1 nm, capable to resolve individual atomic lattice planes. Samples must be stable enough to withstand the electron beam impact during their examination. This can be a problem for polymers. [Pg.14]

Because the electron beam passes through the sample, transmission electron microscopy reveals the interior of the specimen. It is sensitive toward the internal structure of the material (size, shape, and distribution of phases within the material), its composition (distribution of elements, including segregation if present), and the crystalline structure of the phases and the character of crystal defects. [Pg.133]


See other pages where Structural materials transmission electron microscopy is mentioned: [Pg.426]    [Pg.498]    [Pg.537]    [Pg.375]    [Pg.10]    [Pg.105]    [Pg.163]    [Pg.852]    [Pg.19]    [Pg.282]    [Pg.85]    [Pg.556]    [Pg.102]    [Pg.78]    [Pg.202]    [Pg.253]    [Pg.129]    [Pg.382]    [Pg.455]    [Pg.11]    [Pg.149]    [Pg.213]    [Pg.125]    [Pg.203]    [Pg.289]    [Pg.122]    [Pg.547]    [Pg.153]    [Pg.154]    [Pg.89]    [Pg.267]    [Pg.279]    [Pg.212]    [Pg.223]    [Pg.218]    [Pg.373]    [Pg.423]    [Pg.166]    [Pg.245]    [Pg.91]   
See also in sourсe #XX -- [ Pg.191 , Pg.192 ]




SEARCH



Electron material

Electron microscopy structure

Electronic materials

Electronics materials

Material structure

Microscopy materials

Transmission electron microscopy

Transmission electronic microscopy

Transmission microscopy

© 2024 chempedia.info