Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Strecker degradation compounds

Strecker aldehydes are produced by the Strecker degradation of the initial Schiff base (Figure 5). An a-amino carbonyl compound and... [Pg.16]

Strecker aldehyde are generated by rearrangement, decarboxylation and hydrolysis. Thus the Strecker degradation is the oxidative de-amination and de-carboxylation of an a-amino acid in the presence of a dicarbonyl compound. An aldehyde with one fewer carbon atoms than the original amino acid is produced. The other class of product is an a-aminoketone. These are important as they are intermediates in the formation of heterocyclic compounds such as pyrazines, oxazoles and thiazoles, which are important in flavours. [Pg.17]

Amino acids may also undergo thermal degradation, which is almost always coupled with some other food components, particular sugars. The major types of volatile compounds formed from amino-sugar interactions include Strecker degradation aldehydes, alkyl pyrazines, alkyl thiazolines and thiazoles and other heterocycles [35, 36]. As the subject has mainly relevance for baked and roasted vegetable food products, this subject will not be discussed in further detail. [Pg.140]

The first group contains compounds produced in the early stages of the reaction by the breakdown of the Amadori or Heynes intermediates, and includes similar compounds to those found in the caramelisation of sugars. Many of these compounds possess aromas that could contribute to food flavour, but they are also important intermediates for other compounds. The second group comprises simple aldehydes, hydrogen sulphide or amino compounds that result from the Strecker degradation occurring between amino acids and dicarbonyl compounds. [Pg.274]

Several mechanisms have been proposed for the formation of pyrazines in food flavours [18, 23, 25], but the major route is from a-aminoketones, which are products of the condensation of a dicarbonyl with an amino compound via Strecker degradation (Scheme 12.3). Self-condensation of the aminoketones, or condensation with other aminoketones, affords a dihydropyrazine that is oxidised to the pyrazine. [Pg.276]

Hydrogen sulphide is a key intermediate in the formation of many heterocyclic sulphur compounds. It is produced from cysteine by hydrolysis or by Strecker degradation ammonia, acetaldehyde and mercaptoacetaldehyde are also formed (Scheme 12.4). All of these are reactive compounds, providing an important source of reactants for a wide range of flavour compounds. Scheme 12.6 summarises the reactions between hydrogen sulphide and other simple intermediates formed in other parts of the Maillard reaction. [Pg.278]

The Amadori compound may be degraded via either of two pathways, depending on pH, to a variety of active alcohol, carbonyl and dicarbonyl compounds and ultimately to brown-coloured polymers called melanoidins (Figure 2.31). Many of the intermediates are (off-) flavoured. The dicarbonyls can react with amino acids via the Strecker degradation pathway (Figure 2.32) to yield another family of highly flavoured compounds. [Pg.67]

Figure 1. Strecker degradation induced by (a) an a-dicarbonyl compound and (b)... Figure 1. Strecker degradation induced by (a) an a-dicarbonyl compound and (b)...
Two branches of the above reaction pathways provide active reagents for the degradation of a-amino acids to aldehydes and ketones of one less carbon atom (Strecker degradation), which is another arm of the Maillard reaction. Strecker aldehydes from these reactions are important flavor compounds (18). [Pg.171]

Probably the most important reactant in the formation of volatile meat flavor compounds is hydrogen sulfide. It can be formed by several pathways during meat cookery, but one mechanism is Strecker degradation of cysteine in the presence of a diketone as established by Kobayashi and Fujimaki (29). The cysteine condenses with the diketone and the product in turn decarboxylates to amino carbonyl compounds that can be degraded to hydrogen sulfide, ammonia and acetaldehyde. These become very reactive volatiles for the formation of many flavor compounds in meat and other foods. [Pg.173]

This important flavor compound was identified in the head-space volatiles of beef broth by Brinkman, et al. (43) and although it has the odor of fresh onions, it is believed to contribute to the flavor of meat. This compound can be formed quite easily from Strecker degradation products. Schutte and Koenders (49) concluded that the most probable precursors for its formation were etha-nal, methanethiol and hydrogen sulfide. As shown in Figure 5, these immediate precursors are generated from alanine, methionine and cysteine in the presence of a Strecker degradation dicarbonyl compound such as pyruvaldehyde. These same precursors could also interact under similar conditions to give dimethyl disulfide and 3,5-dimethyl-l,2,4-trithiolane previously discussed. [Pg.178]

Several mechanisms have been reported for pyrazine formation by Maillard reactions (21,52,53). The carbon skeletons of pyrazines come from a-dicarbonyl (Strecker) compounds which can react with ammonia to produce ot-amino ketones as described by Flament, et al. (54) which condense by dehydration and oxidize to pyrazines (Figure 6), or the dicarbonyl compounds can initiate Strecker degradation of amino acids to form ot-amino ketones which are hydrolyzed to carbonyl amines, condensed and are oxidized to substituted... [Pg.178]

In former experiments (5) we have shown that chemical analysis for Amadori compounds (mainly consisting of fructose-glutamic acid) and isovaleralde-hyde, formed by Strecker degradation of the amino acids leucine and isoleucine, can be used for an early detection of undesirable quality changes caused by the Maillard reaction. In order to demonstrate the usefulness of these compounds as indicator substances for quality improvement of dried products, we performed drying experiments with carrots as an example of plant products. [Pg.319]

Table I shows that an increase of Amadori compounds occurs parallel with an increase of isovaleraldehyde formed by Strecker degradation of the amino acid leucine (18 ). It becomes evident from Table I that the flavor impression "burnt arises if certain concentrations of isovaleraldehyde are exceeded this flavor change is increased by increasing isovaleraldehyde concentrations. By this means an analytical control of undesirable sensory changes caused by the Maillard reaction in carrots is available. Table I shows that an increase of Amadori compounds occurs parallel with an increase of isovaleraldehyde formed by Strecker degradation of the amino acid leucine (18 ). It becomes evident from Table I that the flavor impression "burnt arises if certain concentrations of isovaleraldehyde are exceeded this flavor change is increased by increasing isovaleraldehyde concentrations. By this means an analytical control of undesirable sensory changes caused by the Maillard reaction in carrots is available.
The imidazole part of the IQ-compounds suggests creatinine as a common precursor. The remaining parts of the IQ-compounds could arise from Maillard reaction products, e.g., 2-methylpyri-dine or 2,5-dimethylpyrazine. These two compounds could be formed through Strecker degradation. In Maillard reactions, this is induced by a-dicarbonyl compounds derived from carbohydrates, which are thereby converted to pyrroles, pyridines, pyrazines, etc. (8). [Pg.509]

Figure 2.10. Strecker degradation of amino acids and a-dicarbonyls to form heterocyclic compounds. For glycine, R = H. Reprinted with permission from Wong, J. W., and Shib-amoto, T. (1996). Geotoxicity of the Maillard reaction products. In The Maillard Reaction. Consequences for the Chemical and Life Sciences, Ikan, R., ed., John Wiley Sons, Chichester, UK, 129-159. Figure 2.10. Strecker degradation of amino acids and a-dicarbonyls to form heterocyclic compounds. For glycine, R = H. Reprinted with permission from Wong, J. W., and Shib-amoto, T. (1996). Geotoxicity of the Maillard reaction products. In The Maillard Reaction. Consequences for the Chemical and Life Sciences, Ikan, R., ed., John Wiley Sons, Chichester, UK, 129-159.
Hodge7 has advanced several possible routes for the conversion of the enol form of the 1-amino-l-deoxy-2-ketose into melanoidin, and the evidence to support these mechanisms is considerable. Thus, the enol may be converted into the Schiff base of a furaldehyde, or to a reductone by loss of water. It may also be broken down into smaller fragments (for example, hydroxy-2-propanone or pyruvaldehyde), which react further with amino compounds. The enol may also react with an a-amino acid and be converted to an aldehyde by a Strecker degradation. The compounds thus formed from... [Pg.121]

Also acetic acid may arise from a reaction of this type. Most important compounds of this pathway are pyruvic aldehyde, diacetyl, hydro-oxyacetone and hydroxydiacetyl which can easily react with amino acids. The Strecker degradation is a reaction where the amino acid is de-carboxylated and loses its amino group. Reaction products are the Strecker aldehyde and - as an intermediate - an aminoketone which forms a pyrazine by dimerization. This pathway is considered to be most important for the origin of pyrazines in thermal aromas. However, only limited knowledge is available about the fate of the Strecker aldehydes. As we will demonstrate they are very reactive. [Pg.146]

Pyridines and pyrroles can be formed in different pathways by Mail-lard reaction. The formation of 5-methyl pyrrole aldehyde and 6-methyl-3-pyridinole has been observed by Nyhammar et al (17) by the reaction of isotope labelled 3-deoxyosone with glycine. The 3-deoxy-hexosone represents an -dicarbonyl compound and in this way the Strecker degradation occurs. Another pathway is the reaction of fu-rans with ammonia. Under roast conditions, we have obtained primarily the corresponding pyrrole, whereas we found the corresponding py-... [Pg.151]

Upon reaction with amino acids, in the Strecker degradation, unstable imines are formed, which may easily decarboxylate, leaving an enamine, which upon hydrolysis yields an aldehyde from the amino acid and an a-aminoketone from the di-carbonyl-compound. [Pg.185]


See other pages where Strecker degradation compounds is mentioned: [Pg.246]    [Pg.246]    [Pg.303]    [Pg.14]    [Pg.311]    [Pg.315]    [Pg.201]    [Pg.329]    [Pg.342]    [Pg.36]    [Pg.36]    [Pg.272]    [Pg.272]    [Pg.279]    [Pg.624]    [Pg.45]    [Pg.327]    [Pg.71]    [Pg.73]    [Pg.175]    [Pg.64]    [Pg.65]    [Pg.248]    [Pg.17]    [Pg.151]    [Pg.152]    [Pg.158]    [Pg.172]    [Pg.268]    [Pg.292]   
See also in sourсe #XX -- [ Pg.246 ]




SEARCH



Strecker

Strecker degradation

© 2024 chempedia.info