Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stoichiometry quantities

The quantity coming from air is practically invariant and corresponds to a level approaching 130 mg/Nm. Nitrogen present in the fuel is distributed as about 40% in the form of NO and 60% as N2. With 0.3% total nitrogen in the fuel, one would have, according to stoichiometry, 850 mg/Nm of NO in the exhaust vapors. Using the above hypothesis, the quantity of NO produced would be (//-U... [Pg.269]

The needed amounts of lime and soda ash can be calculated from the stoichiometry of the reactions. The effluent quaUty is a function of the solubihties of calcium carbonate and magnesium hydroxide and of the quantities of softening chemicals added. The acceptable level of total hardness can be decided and usually is 70—120 mg/L (265—454 mg/gal), expressed as CaC03. The sum of the solubihties of calcium carbonate and magnesium hydroxide is ca 50—70 mg/L (190—265 mg/gal), depending upon the pH. The sum of the concentrations of the carbonic species HCO/ +, ... [Pg.279]

Chemistry is a quantitative science. This means that a chemist wishes to know more than the qualitative fact that a reaction occurs. He must answer questions beginning How much. . . The quantities may be expressed in grams, volumes, concentrations, percentage composition, or a host of other practical units. Ultimately, however, the understanding of chemistry requires that amounts be related quantitatively to balanced chemical reactions. The study of the quantitative relationships implied by a chemical reaction is called stoichiometry. [Pg.224]

Let s put this down schematically. Suppose two substances, A and B, combine according to a known reaction. We wish to know how much B will react with (or, be produced from) a measured quantity of A. The solution to this typical problem of stoichiometry consists of three steps. [Pg.225]

The most successful class of active ingredient for both oxidation and reduction is that of the noble metals silver, gold, ruthenium, rhodium, palladium, osmium, iridium, and platinum. Platinum and palladium readily oxidize carbon monoxide, all the hydrocarbons except methane, and the partially oxygenated organic compounds such as aldehydes and alcohols. Under reducing conditions, platinum can convert NO to N2 and to NH3. Platinum and palladium are used in small quantities as promoters for less active base metal oxide catalysts. Platinum is also a candidate for simultaneous oxidation and reduction when the oxidant/re-ductant ratio is within 1% of stoichiometry. The other four elements of the platinum family are in short supply. Ruthenium produces the least NH3 concentration in NO reduction in comparison with other catalysts, but it forms volatile toxic oxides. [Pg.79]

P the total pressure, aHj the mole fraction of hydrogen in the gas phase, and vHj the stoichiometric coefficient of hydrogen. It is assumed that the hydrogen concentration at the catalyst surface is in equilibrium with the hydrogen concentration in the liquid and is related to this through a Freundlich isotherm with the exponent a. The quantity Hj is related to co by stoichiometry, and Eg and Ag are related to - co because the reaction is accompanied by reduction of the gas-phase volume. The corresponding relationships are introduced into Eqs. (7)-(9), and these equations are solved by analog computation. [Pg.85]

In the schemes considered to this point, even the complex ones, the products form by a limited succession of steps. In these ordinary reaction sequences the overall process is completed when the products appear from the given quantity of reactants in accord with the stoichiometry of the net reaction. The only exception encountered to this point has been the ozone decomposition reaction presented in Chapter 5, which is a chain reaction. In this chapter we shall consider the special characteristics of elementary reactions that occur in a chain sequence. [Pg.181]

The theoretical yield of a product is the maximum quantity that can be expected on the basis of the stoichiometry of a chemical equation. The percentage yield is the percentage of the theoretical yield actually achieved. [Pg.117]

The equilibrium constant of a reaction contains information about the equilibrium composition at the given temperature. However, in many cases, we know only the initial composition of the reaction mixture and are given apparently incomplete information about the equilibrium composition. In fact, the missing information can usually be inferred by using the reaction stoichiometry. The easiest way to proceed is to draw up an equilibrium table, a table showing the initial composition, the changes needed to reach equilibrium in terms of some unknown quantity x, and the final equilibrium composition. The procedure is summarized in Toolbox 9.1 and illustrated in the examples that follow. [Pg.494]

We could again apply the seven-step process in detail. Instead, we take a more compact approach. Begin by determining what species are present in the reaction mixture. Next, use the solubility guidelines to identify the precipitate. After writing the balanced net ionic reaction, use solution stoichiometry and a table of amounts to find the required quantities. [Pg.232]

Carbon monoxide chemisorption was used to estimate the surface area of metallic iron after reduction. The quantity of CO chemisorbed was determined [6J by taking the difference between the volumes adsorbed in two isotherms at 195 K where there had been an intervening evacuation for at least 30 min to remove the physical adsorption. Whilst aware of its arbitrariness, we have followed earlier workers [6,10,11] in assuming a stoichiometry of Fe CO = 2.1 to estimate and compare the surface areas of metallic iron in our catalysts. As a second index for this comparison we used reactive N2O adsorption, N20(g) N2(g) + O(ads), the method widely applied for supported copper [12]. However, in view of the greater reactivity of iron, measurements were made at ambient temperature and p = 20 Torr, using a static system. [Pg.259]

Simultaneous measurements of both the amount of butane evolved and the quantity of grafted organometallic fragments at increasing time of reaction allows the stoichiometry of the surface complexes Pts[SnBux] / to be determined (Fig. 7). Furthermore, extrapolation to a low amount of Sn grafted shows that a [BusSnJ Pts species is formed, which then rapidly evolved towards more dealkylated species and finally to Pts[SnBu]jy. [Pg.188]

The quantity of aluminum used in the charge corresponds to about 10% excess over that required by the stoichiometry of the reaction ... [Pg.397]

Stoichiometry (from the Greek stoikeion—element) is the practical application of the law of multiple proportions. The stoichiometric equation for a chemical reaction states unambiguously the number of molecules of the reactants and products that take part from which the quantities can be calculated. The equation must balance. [Pg.36]

The quantity of sodium nitrite used in diazotisation is usually the equimolar amount required by reaction stoichiometry or in very slight excess. A large excess of nitrite is avoided because of the instability of... [Pg.53]

In chemical work, it is important to be able to calculate how much raw material is needed to prepare a certain quantity of products. It is also useful to know if a certain reaction method can prepare more product from a given quantity of material than another reaction method. Analyzing materials means finding out how much of each element is present. To do the measurements, we often convert parts of the material to compounds that are easy to separate, and we then measure those compounds. All these measurements involve chemical stoichiometry, the science of measuring how much of one thing can be produced from certain amounts of others. [Pg.130]

Stoichiometry the science of measuring how much of one substance can be produced from given quantities of others. [Pg.361]

Since water molecules occupy regular positions within the lattice of a hydrate with a specific stoichiometry (e.g., 1 1 monohydrate, 2 1 dihydrate, 5 1 pentahydrate) to the solid, relatively large quantities of water are sorbed. Figure 3 shows a moisture uptake isotherm for ipratropium bromide [39]. This substance undergoes an apparent hydration of the crystal between 63% and 75% relative humidity. Above 75% relative humidity, approximately 4.6% water is sorbed (theoretical monohydrate is 4.4 g/g). Interestingly, as anhydrous ipratropium bromide is equilibrated for extended time periods (e.g., 2 months and 5 months respectively, as shown in Fig. (3), hydration of the crystal appears to occur at... [Pg.401]


See other pages where Stoichiometry quantities is mentioned: [Pg.35]    [Pg.295]    [Pg.35]    [Pg.295]    [Pg.353]    [Pg.74]    [Pg.456]    [Pg.479]    [Pg.201]    [Pg.36]    [Pg.146]    [Pg.340]    [Pg.69]    [Pg.68]    [Pg.110]    [Pg.969]    [Pg.233]    [Pg.76]    [Pg.135]    [Pg.92]    [Pg.107]    [Pg.70]    [Pg.79]    [Pg.531]    [Pg.209]    [Pg.158]    [Pg.448]    [Pg.395]    [Pg.190]    [Pg.214]    [Pg.99]    [Pg.23]    [Pg.249]    [Pg.288]    [Pg.57]   


SEARCH



Stoichiometry limiting quantities

© 2024 chempedia.info