Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereoselectivity solvent effect

S-N bond cleavage 159 S-O bond lengths 543 Solvated electrons 897, 905 Solvent effects 672 in elimination reactions 772 S-O stretching frequencies 543, 545, 546, 552-555, 560-562 Spiroconjugation 390 Stereoselectivity 779, 789 of cylcoaddition reactions 799 of sulphones 761 Steroids... [Pg.1204]

Most of these results have been obtained in methanol but some of them can be extrapolated to other solvents, if the following solvent effects are considered. Bromine bridging has been shown to be hardly solvent-dependent.2 Therefore, the selectivities related to this feature of bromination intermediates do not significantly depend on the solvent. When the intermediates are carbocations, the stereoselectivity can vary (ref. 23) widely with the solvent (ref. 24), insofar as the conformational equilibrium of these cations is solvent-dependent. Nevertheless, this equilibration can be locked in a nucleophilic solvent when it nucleophilically assists the formation of the intermediate. Therefore, as exemplified in methylstyrene bromination, a carbocation can react 100 % stereoselectivity. [Pg.111]

The solvent has no influence on the stereoselectivity of bromine addition to alkenes (Rolston and Yates, 1969b), but it could have some effect on the regioselectivity, since this latter depends not only on polar but also on steric effects. Obviously, it modified the chemoselectivity. For example, in acetic acid Rolston and Yates find that 2-butenes give 98% dibromides and 2% solvent-incorporated products whereas, in methanol with 0.2 m NaBr, dibromide is only about 40% and methoxybromide 60%. There are no extensive data, however, on the solvent effects on the regio- and chemoselectivity which would allow reliable predictions. [Pg.237]

The future prospects for the capsule project emerge from these considerations. Further increasing the size of the capsule and building chemical functionalities into the inner cavity would allow a closer emulation the functions of enzymes, especially those that require cofactors in order to catalyze chemical transformations. Another important aspect is to design capsules that can combine stereospecificity and catalysis - that is accelerate stereoselective transformations. Capsules that reversibly dimerize in water would probably contribute a lot more to our understanding of non-covalent forces and solvent effects in this most biorelevant medium. So far, water solubility and assembly have not been achieved with hydrogen-bonded capsules. [Pg.209]

Different stereoselectivities caused by solvent effects are demonstrated in the reduction of dihydroisophorone (3,3,5-trimethylcyclohexanone) with sodium borohydride which gave less stable tranj-3,3,5-trimethylcyclohexanol (with axial hydroxyl) by reduction in anhydrous isopropyl alcohol (55-56%), in anhydrous tert-butyl alcohol (55%), in 65% aqeuous isopropyl alcohol (59.5%), in anhydrous ethanol (67%), and in 71% aqueous methanol (73%) (the balance to 100% being the more stable cis isomer with equatorial hydroxyl) [849]. [Pg.114]

A third mechanistically distinct [3 -1- 2] cycloaddition between vinyl ethers and vinyl-carbenoids was discovered and reported in 2001 [26]. This reaction is remarkable because when Rh2(S-DOSP)4 is used as the catalyst, the cis-cyclopentenes 142 are formed in up to 99% enantiomeric excess. The reaction occurs between vinylcarbenoids unsubstituted or alkyl-substituted at the vinyl terminus and vinyl ethers substituted with an aryl or vinyl group. Some illustrative examples are shown in Tab. 14.12. The reaction is considered to be a concerted process, which would be consistent with the highly stereoselective nature of the reaction [26]. Contrary to the [3-1-2] cycloaddition derived by means of vinylogous carbenoid reactivity, this latest [3 -1- 2] cycloaddition is not influenced by solvent effects. Due to steric demands on the carbenoid, the [3-1-2] cycloaddi-tion only occurs with cis-vinyl ethers. [Pg.323]

Many mechanisms had been proposed in the past to rationalize this selectivity (tri-oxanes, perepoxide, exciplex, dipolar or biradical intermediates) however, it is now generally accepted that the reaction proceeds through an intermediate exciplex which has the structural requirements of a perepoxide. This assumption is supported by (a) the lack of stereoselectivity in the reactions with chiral oxazolines and tiglic acid esters (b) the comparison of the diastereoselectivity of dialkyl substituted acrylic esters with structurally similar non-functionalized aUtenes (c) the intermolecular isotope effects in the photooxygenation of methyl tiglate and (d) the solvent effects on regioselectivity. ... [Pg.853]

The observed solvent effect on the stereoselectivity of singlet oxygen with ester 79 was rationalized by examination of the possible transition states of this reaction (Scheme 22). [Pg.855]

The characteristic features of hydroboration of alkenes—namely, regioselec-tivity, stereoselectivity, syn addition, and lack of rearrangement—led to the postulation of a concerted [2 + 2] cycloaddition of borane353,354 via four-center transition state 37. Kinetic studies, solvent effects, and molecular-orbital calculations are consistent with this model. As four-center transition states are unfavorable, however, the initial interaction of borane [or mentioned monobridged dimer, Eq. (6.56)] with the alkene probably involves an initial two-electron, three-center interaction355,356(38, 39). [Pg.318]

Clifford, Rayner and co-workers at the University of Leeds [66,67] have used the density of SCCO2 to control the stereoselectivity of reactions in a novel way. Previous workers have observed an influence of density on selectivity in reactions very close to the critical point. The novelty of the Leeds work is that the effects are observed at densities considerably above pc and temperatures higher than Tc. This selectivity has no obvious counterpart in reaction chemistry in conventional solvents. Effects have been observed in a whole range of reactions, and this approach may well have widespread applicability. [Pg.482]

Anionic ring-opening polymerization of l,2,3,4-tetramethyl-l,2,3,4-tetraphenylcyclo-tetrasilane is quite effectively initiated by butyllithium or silyl potassium initiators. The process resembles the anionic polymerization of other monomers where solvent effects play an important role. In THF, the reaction takes place very rapidly but mainly cyclic live- and six-membered oligomers are formed. Polymerization is very slow in nonpolar media (toluene, benzene) however, reactions are accelerated by the addition of small amounts of THF or crown ethers. The stereochemical control leading to the formation of syndiotactic, heterotactic or isotactic polymers is poor in all cases. In order to improve the stereoselectivity of the polymerization reaction, more sluggish initiators like silyl cuprates are very effective. A possible reaction mechanism is discussed elsewhere49,52. [Pg.2187]

Bromination.2 This bromine-crown ether complex, like dioxane-bromine (5, 58), can brominate alkenes, but the stereoselectivity is greater than that with free bromine and is less sensitive to solvent effects. Thus, bromination of trans-ifi-methylstyrene with DBC Br2 occurs exclusively by anti-addition and bromination of dr-/J-methylstyrene occurs by anti-addition to the extent of 95-100%. The bromine complex of polydibenzo-18-crown-63 is a particularly useful reagent because it can be packed as a slurry in a chromatography column. The alkene is then placed on the column and eluted with CC14. [Pg.83]

In order to explain the high stereocontrol occurring in the iodocyclization of 3-acylamino-2-methylenealkanoates, the conformational space of the starting molecule and the potential energy surface (PES) for the cyclization reaction was explored at the DFT level the polarized continuum formalism (PCM) for chloroform was used in order to consider the solvent effect. The observed stereoselection [(9) (10)] was (de)... [Pg.320]

The examples discussed above illustrate that reactivity and stereoselectivity are subject to numerous, often subtle, influences. Continuous improvements in molecular modeling have enabled clarification of many, previously unexplained observations in the future even solvent effects might, perhaps, be taken into account. Predictive models based on such calculations should, however, always be substantiated by experimental data. [Pg.30]

DFT calculations have shown that in C-H hydroxylation of cyclohexane, the nonhaem oxidant (N4Py)FeIV=02+ is more reactive than P450 Cpd I and is predicted to involve multi-state reactivity with a strong solvent effect and a temperature-dependent stereoselectivity reflecting spin crossover effects.58... [Pg.90]

Various mechanisms for the insertion reaction are conceivable (a) ionic stepwise, (b) radical (chain or nonchain), and (c) concerted. Generally, ionic or radical mechanisms give a mixture of products with cis and trans stereochemistry. In some special cases of the ionic reaction, however, exclusive formation of a trans product has been observed (62, 66). Therefore, stereoselectivity does not necessarily imply a concerted mechanism other evidence, e.g., regioselectivity, kinetic data, solvent effects, and substituent effects, must be sought out. [Pg.253]

It should be noted that the stereoselectivity is also completely different from that associated with triplet 1,4-biradicals. Thus, a highly exo-selective formation ofbicyclic oxetanes was observed during PET-promoted PB reactions, whereas a highly endo-selective formation ofbicyclic oxetanes was reported for PB reactions that proceeded via triplet 1,4-biradicals (see Scheme 7.25). The competitive reaction pathway for electron-rich alkenes explained a notable solvent effect on the regioselectivity and stereoselectivity of the PB reaction of dihydrofuran (Scheme 7.15). Thus, an endo-selective formation of 3-alkoxyoxetane was observed when using benzene, whereas the exo-isomer of 2-alkoxyoxetane was detected as a product of the PB reaction in acetonitrile (Scheme 7.15). [Pg.230]


See other pages where Stereoselectivity solvent effect is mentioned: [Pg.41]    [Pg.41]    [Pg.109]    [Pg.240]    [Pg.192]    [Pg.343]    [Pg.133]    [Pg.196]    [Pg.265]    [Pg.54]    [Pg.165]    [Pg.853]    [Pg.423]    [Pg.279]    [Pg.446]    [Pg.446]    [Pg.279]    [Pg.383]    [Pg.73]    [Pg.571]   


SEARCH



Stereoselective control solvent effects

Stereoselective effects

Stereoselective solvent effect

© 2024 chempedia.info