Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereoselective synthesis reaction

Total syntheses have been reported by E.J. Corey (1978B, 1979). We outline only the stereoselective synthesis of a protected fragment (A) which contains carbon atoms 1—9. This fragment was combined with fragment (B) by a Grignard reaction and cyclized by one of the methods typical for macrolide formation (see p. 146). [Pg.319]

The coupling of alkenylboranes with alkenyl halides is particularly useful for the stereoselective synthesis of conjugated dienes of the four possible double bond isomers[499]. The E and Z forms of vinylboron compounds can be prepared by hydroboration of alkynes and haloalkynes, and their reaction with ( ) or (Z)-vinyl iodides or bromides proceeds without isomerization, and the conjugated dienes of four possible isomeric forms can be prepared in high purity. [Pg.221]

Conjugated dienes, upon complexation with metal carbonyl complexes, are activated for Friedel-Crafts acylation reaction at the akyhc position. Such reactions are increasingly being used in the stereoselective synthesis of acylated dienes. Friedel-Crafts acetylation of... [Pg.562]

Darzens reaction can be used to efficiently complete the stereoselective synthesis of a"-substituted epoxy ketones. As an example, Enders and Hett reported a technique for the asymmetric synthesis of a"-silylated a,P-epoxy ketones. Thus, optically active a -silyl a-bromoketone 38 was treated with LDA followed by the addition of benzaldehyde to give a"-silyl epoxyketone 40 in 66% yield with good... [Pg.19]

In the synthesis of carpamic acid (98), Mitsutaka and Ogawa have used 1,2-dihydropyridine as a starting material [80H(14)169]. Photooxygenation of dihydropyridine 8h afforded enr/o-peroxide 96. Subsequent stereoselective nucleophilic reaction of 96 with ethyl vinyl ether in the presence of tin chloride gave tetrahydropyridinol 97, which was then converted into carpamic acid (98) in six more steps. [Pg.291]

The stereochemical outcome of the Michael addition reaction with substituted starting materials depends on the geometry of the a ,/3-unsaturated carbonyl compound as well as the enolate geometry a stereoselective synthesis is possible. " Diastereoselectivity can be achieved if both reactants contain a stereogenic center. The relations are similar to the aldol reaction, and for... [Pg.202]

For the purpose of stereoselective synthesis the selective elimination at the stage of the /3-hydroxysilane 5 is not a problem the diastereoselective preparation of the desired /3-hydroxysilane however is generally not possible. This drawback can be circumvented by application of alternative reactions to prepare the /3-hydroxysilane 2 however these methods do not fall into the category of the Peterson reaction. [Pg.228]

STEREOSELECTIVE HENRY REACTIONS AND APPLICATIONS TO ORGANIC SYNTHESIS... [Pg.51]

An expedient and stereoselective synthesis of bicyclic ketone 30 exemplifies the utility and elegance of Corey s new catalytic system (see Scheme 8). Reaction of the (R)-tryptophan-derived oxazaboro-lidine 42 (5 mol %), 5-(benzyloxymethyl)-l,3-cyclopentadiene 26, and 2-bromoacrolein (43) at -78 °C in methylene chloride gives, after eight hours, diastereomeric adducts 44 in a yield of 83 % (95 5 exo.endo diastereoselectivity 96 4 enantioselectivity for the exo isomer). After reaction, the /V-tosyltryptophan can be recovered for reuse. The basic premise is that oxazaborolidine 42 induces the Diels-Alder reaction between intermediates 26 and 43 to proceed through a transition state geometry that maximizes attractive donor-acceptor interactions. Coordination of the dienophile at the face of boron that is cis to the 3-indolylmethyl substituent is thus favored.19d f Treatment of the 95 5 mixture of exo/endo diastereo-mers with 5 mol % aqueous AgNC>3 selectively converts the minor, but more reactive, endo aldehyde diastereomer into water-soluble... [Pg.80]

As described in Section 2.3.2, vinylaziridines are versatile intermediates for the stereoselective synthesis of (E)-alkene dipeptide isosteres. One of the simplest methods for the synthesis of alkene isosteres such as 242 and 243 via aziridine derivatives of type 240 and 241 (Scheme 2.59) involves the use of chiral anti- and syn-amino alcohols 238 and 239, synthesizable in turn from various chiral amino aldehydes 237. However, when a chiral N-protected amino aldehyde derived from a natural ot-amino acid is treated with an organometallic reagent such as vinylmag-nesium bromide, a mixture of anti- and syn-amino alcohols 238 and 239 is always obtained. Highly stereoselective syntheses of either anti- or syn-amino alcohols 238 or 239, and hence 2,3-trans- or 2,3-as-3-alkyl-2-vinylaziridines 240 or 241, from readily available amino aldehydes 237 had thus hitherto been difficult. Ibuka and coworkers overcame this difficulty by developing an extremely useful epimerization of vinylaziridines. Palladium(0)-catalyzed reactions of 2,3-trons-2-vinylaziri-dines 240 afforded the thermodynamically more stable 2,3-cis isomers 241 predominantly over 240 (241 240 >94 6) through 7i-allylpalladium intermediates, in accordance with ab initio calculations [29]. This epimerization allowed a highly stereoselective synthesis of (E) -alkene dipeptide isosteres 243 with the desired L,L-... [Pg.64]

The carbonyl addition reactions of benzylmetals, compared to the allylic counterparts, have found few applications in stereoselective synthesis, apparently for the following reasons The carbonyl addition of alkali metal salts (M = Li, Na, K, Cs) of benzyl anions, with few exceptions, usually proceeds with low levels of simple diastereoselectivity affording mixtures of syn- or <7 / -diastereomers (see Section 1.3.2.3.1.). [Pg.185]

Allylboron compounds have proven to be an exceedingly useful class of allylmetal reagents for the stereoselective synthesis of homoallylic alcohols via reactions with carbonyl compounds, especially aldehydes1. The reactions of allylboron compounds and aldehydes proceed by way of cyclic transition states with predictable transmission of olefinic stereochemistry to anti (from L-alkene precursors) or syn (from Z-alkene precursors) relationships about the newly formed carbon-carbon bond. This stereochemical feature, classified as simple diastereoselection, is general for Type I allylorganometallicslb. [Pg.260]

The Ireland-Claisen reaction of ( )-vinylsilanes has been applied to the stereoselective synthesis of syn- and c/nti-2-substituted 3-silyl alkcnoic acids. a R-2-Alkyl-3-silyl acids are prepared by rearrangement of ( )-silyl ketene acetals which are generated in situ from the kinetically formed (Z)-enolate of the corresponding propionate ester40. Chelation directs the stereochemistry of enolization of heteroelement-substituted acetates in such a way that the syn-diastereomers are invariably formed on rearrangement403. [Pg.345]

An interesting and stereoselective synthesis of 1,3-diols has been developed which is based on Lewis acid promoted reactions of /f-(2-propenylsilyloxy (aldehydes. Using titanium(IV) chloride intramolecular allyl transfer takes place to give predominantly Ag/r-l,3-diols, whereas anti-1,3-diols, formed via an / / /-molecular process, are obtained using tin(IV) chloride or boron trifluoride diethyl ether complex71. [Pg.352]

The stereoselectivity of Lewis acid promoted reactions between 2-butenylstannanes and aldehydes has been widely studied, and several very useful procedures for stereoselective synthesis have been developed. In particular syn-products are formed stereoselectively in reactions between trialkyl- and triaryl(2-butenyl)stannanes, and aldehydes induced by boron trifluoride-diethyl ether complex, irrespective of the stannane geometry66. [Pg.369]

The advantages of allylchromium reagents in stereoselective synthesis were soon shown7 8- 9. Due to mild reaction conditions, sensitive functionalities - even epoxide rings10 -... [Pg.434]

Stereoselective Strecker reactions with galactosylamine 1 can also be achieved with sodium cyanide and acetic acid in 2-propanol. The reactions, however, proceed slowly and with a lower stereoselectivity, giving diastereomeric ratios of the products between 3 1 and 7 1. The scope of the method can be extended to other glycosylamines, e.g., 2,3,4-tri-O-pivaloyl-a-D-arabinosyl-amine which allows the stereoselective synthesis of (A )-amino nitriles61,62. [Pg.794]

This strategy resulted in a direct and stereoselective synthesis of the dolestane skeleton, in which the relative configuration at the quaternary C-5 and C-12 carbons was established. It was shown that the key reaction produced the tricyclic compound slereospecifically in a remarkably high chemical yield57. [Pg.952]

Based on the facile formation and reactivity of323, and the retro Diels-Alder reaction of 325306,310, a simple procedure has been developed for the stereoselective synthesis of functionalized conjugated dienes as well as vinylallenes311 (see equation 119). [Pg.464]

Solanesol and other prenyl alcohols are important as metabolites in mulberry and tobacco leaves and in the synthesis of isoprenoid quinones. Hence, Sato and collaborators107 have developed a stereoselective synthesis of all-trans-polyprenol alcohols up to C50. Construction of the requisite skeletons was accomplished by the alkylation of a p-toluenesulphonyl-stabilized carbanion, followed by reductive desulphonylation of the resulting allylic sulphonyl group. This was achieved most efficiently by the use of a large excess of lithium metal in ethylamine (equation (43)), although all reaction conditions led to mixtures. The minor product results from double bond rearrangement. [Pg.945]

This procedure illustrates a general method for the stereoselective synthesis of ( P)-disubstitnted alkenyl alcohols. The reductive elimination of cyclic /3-halo-ethers with metals was first introduced by Paul3 and one example, the conversion of tetrahydrofurfuryl chloride [2-(chloromethyl)tetrahydrofuran] to 4-penten-l-ol, is described in an earlier volume of this series.4 In 1947 Paul and Riobe5 prepared 4-nonen-l-ol by this method, and the general method has subsequently been applied to obtain alkenyl alcohols with other substitution patterns.2,6-8 (I )-4-Hexen-l-ol has been prepared by this method9 and in lower yield by an analogous reaction with 3-bromo-2-methyltetra-hydropyran.10... [Pg.66]

Pd/P(t-Bu)., in the presence of Cy2NMe, is an unusually mild and versatile catalyst for Heck reactions of aryl chlorides (Tables 1 and 2) (as well as for room-temperature reactions of aryl bromides).21 22 23 Example A, the coupling of chlorobenzene with butyl methacrylate, illustrates the application of this method to the stereoselective synthesis of a trisubstituted olefin a-methylcinnamic acid derivatives are an important family of compounds that possess biological activity (e.g., hypolipidemic24 and antibiotic25) and serve as intermediates in the synthesis of pharmaceuticals (e.g., Sulindac, a non-steroidal anti-inflammatory drug26). Example B, the coupling of 4-chlorobenzonitrile with styrene, demonstrates that Pd/P(t-Bu). can catalyze the Heck reaction of activated aryl chlorides at room temperature. [Pg.35]

Stereoselective inverse-demand hetero (4 + 2) cycloadditions. A Chiral Template for C-Aryl Glycoside Synthesis. Chiral allenamides2 4 had been used in highly stereoselective inverse-demand hetero (4 + 2) cycloaddition reactions with heterodienes.5 These reactions lead to stereoselective synthesis of highly functionalized pyranyl heterocycles. Further elaboration of these cycloadducts provides a unique entry to C-aryl-glycosides and pyranyl structures that are common in other natural products (Scheme 1). [Pg.79]

Bloch R., Mandville G. Novel Strategies for the Use of Retro Diels-Alder Reactions in Stereoselective Synthesis Recent Res. Dev. Org. Chem. 1998 2 441-452 Keywords retro-Diels-Alder reactions, stereoselective synthesis... [Pg.307]

Cozzi F. and Molteni V. Stereoselective Synthesis of Dihydropyrans hy Hetero Diels-Alder Reactions in in Seminars in Organic Synthesis 22th Summer Sch A. Corbella 1997 95, Ed. Trombini, Pb. Soc. Chim. Ital. [Pg.312]

Kaneko C., Katagiri N., Nomura M., Sato H. A New Method for the Stereoselective Synthesis of Nucleosides by Means of Sodium Borohydride Mediated Reductive C-C or C-N Bond Cleavage Reaction Isr. J. Chem. 1991 31 247-259 Keywords carbohydrates... [Pg.322]

Any reaction in which only one of a set of stereoisomers is formed exclusively or predominantly is called a stereoselective synthesis. The same term is used when a mixture of two or more stereoisomers is exclusively or predominantly formed at the expense of other stereoisomers. In a stereospecific reaction, a given isomer leads to one product while another stereoisomer leads to the opposite product. All stereospecific reactions are necessarily stereoselective, but the converse is not true. [Pg.166]


See other pages where Stereoselective synthesis reaction is mentioned: [Pg.299]    [Pg.440]    [Pg.90]    [Pg.735]    [Pg.270]    [Pg.171]    [Pg.247]    [Pg.376]    [Pg.390]    [Pg.755]    [Pg.781]    [Pg.38]    [Pg.52]    [Pg.279]    [Pg.306]    [Pg.512]    [Pg.91]    [Pg.586]    [Pg.157]    [Pg.149]    [Pg.197]   
See also in sourсe #XX -- [ Pg.291 , Pg.292 , Pg.293 , Pg.294 , Pg.295 , Pg.296 ]




SEARCH



1.3- diols, asymmetric aldol reactions stereoselective synthesis

Asymmetric aldol reactions stereoselective synthesis

Drug synthesis stereoselective reactions

Reaction stereoselectivity

Stereoselective Aldol Reactions in the Synthesis of Polyketide Natural Products

Stereoselective Henry Reactions and Applications to Organic Synthesis

Stereoselective Syntheses of Chiral Piperidines via Addition Reactions to 4-Pyridones

Stereoselective Synthesis of 1,3-Diols Asymmetric Aldol Reactions

Stereoselective reaction Strychnine, synthesis

Stereoselective reactions

Stereoselective synthesis

Stereoselective synthesis cross-coupling reactions

Stereoselective synthesis electrophilic reactions

Stereoselective synthesis nucleophilic reactions

Stereoselectivity synthesis

Synthesis, stereoselective enantioselective reactions

© 2024 chempedia.info