Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stereoisomers properties

Diastereomers= stereoisomers which are not rnirror images usually have different physical properties... [Pg.2]

Because diastereomers are not mirror images of each other they can have quite different physical and chemical properties For example the (2R 3R) stereoisomer of 3 ammo 2 butanol is a liquid but the (2R 3S) diastereomer is a crystalline solid... [Pg.302]

Stereochemistry (Chapter 7) Chemistry in three dimensions the relationship of physical and chemical properties to the spatial arrangement of the atoms in a molecule Stereoelectron ic effect (Section 5 16) An electronic effect that depends on the spatial arrangement between the or bitals of the electron donor and acceptor Stereoisomers (Section 3 11) Isomers with the same constitu tion but that differ in respect to the arrangement of their atoms in space Stereoisomers may be either enantiomers or diastereomers... [Pg.1294]

Multiple Chiral Centers. The number of stereoisomers increases rapidly with an increase in the number of chiral centers in a molecule. A molecule possessing two chiral atoms should have four optical isomers, that is, four structures consisting of two pairs of enantiomers. However, if a compound has two chiral centers but both centers have the same four substituents attached, the total number of isomers is three rather than four. One isomer of such a compound is not chiral because it is identical with its mirror image it has an internal mirror plane. This is an example of a diaster-eomer. The achiral structure is denoted as a meso compound. Diastereomers have different physical and chemical properties from the optically active enantiomers. Recognition of a plane of symmetry is usually the easiest way to detect a meso compound. The stereoisomers of tartaric acid are examples of compounds with multiple chiral centers (see Fig. 1.14), and one of its isomers is a meso compound. [Pg.47]

DUactide (5) exists as three stereoisomers, depending on the configurations of the lactic acid monomer used. The enantiomeric forms whereia the methyl groups are cis are formed from two identical lactic acid molecules, D- or L-, whereas the dilactide formed from a racemic mixture of lactic acid is the opticaUy iaactive meso form, with methyl groups trans. The physical properties of the enantiomeric dilactide differ from those of the meso form (6), as do the properties of the polymers and copolymers produced from the respective dilactide (23,24). [Pg.512]

When additional substituents ate bonded to other ahcycHc carbons, geometric isomers result. Table 2 fists primary (1°), secondary (2°), and tertiary (3°) amine derivatives of cyclohexane and includes CAS Registry Numbers for cis and trans isomers of the 2-, 3-, and 4-methylcyclohexylamines in addition to identification of the isomer mixtures usually sold commercially. For the 1,2- and 1,3-isomers, the racemic mixture of optical isomers is specified ultimate identification by CAS Registry Number is fisted for the (+) and (—) enantiomers of /n t-2-methylcyclohexylamine. The 1,4-isomer has a plane of symmetry and hence no chiral centers and no stereoisomers. The methylcyclohexylamine geometric isomers have different physical properties and are interconvertible by dehydrogenation—hydrogenation through the imine. [Pg.206]

Many classes of natural product possess heterocyclic components (e.g. alkaloids, carbohydrates). However, their structures are often complex, and although structure-based names derived by using the principles outlined in the foregoing sections can be devised, such names tend to be impossibly cumbersome. Furthermore, the properties of complex natural product structures are often closely bound up with their stereochemistry, and for a molecule containing a number of asymmetric elements the specification of a particular stereoisomer by using the fundamental descriptors (R/S, EjZ) is a job few chemists relish. [Pg.28]

Since chirality is a property of a molecule as a whole, the specific juxtaposition of two or more stereogenic centers in a molecule may result in an achiral molecule. For example, there are three stereoisomers of tartaric acid (2,3-dihydroxybutanedioic acid). Two of these are chiral and optically active but the third is not. [Pg.85]

Since the stereochemistry of the triene system of LTB4 had not been determined prior to synthesis, a number of stereoisomers of LTB4 were prepared for purposes of definitive comparison of physical properties and bioactivity with biologically produced LTB4. The various stereoisomers of LTB4 were much less active biologically than LTB4 itself. [Pg.324]

Difluorobutane contains two chiral atoms, and can exist as any one of three stereoisomers. Predicting the properties of these molecules is complicated due to the fact that each exists as a mixture of three conformers because of rapid internal rotation about the central carbon-carbon bond. [Pg.69]

Now, consider the physical properties of these stereoisomers. Enantiomers should have many of the same physical properties, such as energy and dipole moment, but diastereomers should not. Obtain the energy of each conformer and use equation (1) to calculate the composition of a large sample of each stereoisomer at 298 K. Then, obtain the dipole moment of each conformer and use equatiori (2) to calculate the dipole moment of a large sample of each stereoisomer at 298 K. Do enantiomers have the same dipole moment Do diastereomers have different dipole moments ... [Pg.69]

D. Bartschat, D. Eehmann, A. Dietrich, A. Mosandl and R. Kaiser, Chfr al compounds of essential oils. XIX. 4-methyl-5 decanolide chfr ospeciflc analysis, str ucture and properties of the stereoisomers , Phytochem. Anal. 6 130-134 (1995). [Pg.245]

It was apparent that the FDA recognized the ability of the pharmaceutical industry to develop chiral assays. With the advent of chiral stationary phases (CSPs) in the early 1980s [8, 9], the tools required to resolve enantiomers were entrenched, thus enabling the researcher the ability to quantify, characterize, and identify stereoisomers. Given these tools, the researcher can assess the pharmacology or toxicology and pharmacokinetic properties of enantiopure drugs for potential interconversion, absorption, distribution, and excretion of the individual enantiomers. [Pg.252]

Some physical properties of the three stereoisomers are listed in Table 9.3. The (+)- and (-j-tartaric acids have identical melting points, solubilities, and densities but differ in the sign of their rotation of plane-polarized light. The meso isomer, by contrast, is diastereomeric with the (+) and (-) forms. As such, it has no mirror-image relationship to (+)- and (-)-tartaric acids, is a different compound altogether, and has different physical properties. [Pg.306]

Table 9,3 Some Properties of the Stereoisomers of Tartaric Acid... Table 9,3 Some Properties of the Stereoisomers of Tartaric Acid...
Diels-Alder reaction and. 494-495 El reaction and, 392 E2 reaction and, 387-388 R.S configuration and, 297-300 S 1 reaction and, 374-375 S -2 reactions and, 363-364 Stereogenic center, 292 Stereoisomers, 111 kinds of, 310-311 number of, 302 properties of, 306 Stereospecilic, 228, 494 Stereospecific numbering, sn-glycerol 3-phosphate and, 1132 Steric hindrance, Sjvj2 reaction and, 365-366 Steric strain, 96... [Pg.1315]

Threonine, stereoisomers of, 302-303 structure and properties of, 1019 Threose. configuration of, 982 molecular model of, 294 Thromboxane B2. structure of,... [Pg.1317]

The most common states of a pure substance are solid, liquid, or gas (vapor), state property See state function. state symbol A symbol (abbreviation) denoting the state of a species. Examples s (solid) I (liquid) g (gas) aq (aqueous solution), statistical entropy The entropy calculated from statistical thermodynamics S = k In W. statistical thermodynamics The interpretation of the laws of thermodynamics in terms of the behavior of large numbers of atoms and molecules, steady-state approximation The assumption that the net rate of formation of reaction intermediates is 0. Stefan-Boltzmann law The total intensity of radiation emitted by a heated black body is proportional to the fourth power of the absolute temperature, stereoisomers Isomers in which atoms have the same partners arranged differently in space, stereoregular polymer A polymer in which each unit or pair of repeating units has the same relative orientation, steric factor (P) An empirical factor that takes into account the steric requirement of a reaction, steric requirement A constraint on an elementary reaction in which the successful collision of two molecules depends on their relative orientation. [Pg.967]

Biocatalytic access to both antipodal sulfoxides was exploited in total syntheses of bioactive compounds, which is outlined in some representative examples. Biooxidation of functionalized dialkyl sulfides was utilized in the direct synthesis of both enantiomers of sulforaphane and some analogs in low to good yields and stereoselectivities (Scheme 9.27) [206]. This natural product originates from broccoli and represents a potent inducer of detoxification enzymes in mammalian metabolism it might be related to anticarcinogenic properties of plants from the cruciform family. All four possible stereoisomers of methionine (R = Me) and ethionine sulfoxides... [Pg.254]

Two or more substances that have the same molecular formula but different structures and properties are called isomers. Two main types of isomers exist. Structural isomers are ones in which the atoms are bonded in different orders. In stereoisomers, all the bonds in the molecule are the same, but the spatial arrangements are different. [Pg.169]

Brady, K.T. Balster, R.L. and May, E.L. Discriminative stimulus properties of stereoisomers of N-allylnormetazocine in phencyclidine-trained squirrel monkeys and rats. Science 215 178-180, 1982. [Pg.24]

Slifer, B.L., and Balster, R.L. Reinforcing properties of stereoisomers of the putative sigma agonists N-allylnormetazocine and cyclazocine in Rhesus monkeys, il Pharmacol Fxp Ther 225 522-528, 1983. [Pg.25]


See other pages where Stereoisomers properties is mentioned: [Pg.338]    [Pg.299]    [Pg.237]    [Pg.97]    [Pg.154]    [Pg.75]    [Pg.6]    [Pg.316]    [Pg.322]    [Pg.256]    [Pg.590]    [Pg.61]    [Pg.855]    [Pg.144]    [Pg.116]    [Pg.118]    [Pg.211]    [Pg.318]    [Pg.532]    [Pg.185]    [Pg.345]    [Pg.455]    [Pg.462]    [Pg.962]    [Pg.1172]    [Pg.153]   
See also in sourсe #XX -- [ Pg.306 ]

See also in sourсe #XX -- [ Pg.183 ]

See also in sourсe #XX -- [ Pg.152 ]

See also in sourсe #XX -- [ Pg.160 ]

See also in sourсe #XX -- [ Pg.40 ]




SEARCH



Stereoisomer

Stereoisomers

© 2024 chempedia.info