Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steps analysis, description

Do not use steps 3-5 of the DC convergence solutions. Using these steps may not produce a valid DC operating point, which is essential for SPICE to linearize the circuit. See the AC analysis description. Once DC convergence is achieved, the AC analysis will also converge. [Pg.17]

Description of the entire process and subprocesses, including flow diagram and critical step analysis... [Pg.40]

Exploratory data analysis (EDA). This analysis, also called pretreatment of data , is essential to avoid wrong or obvious conclusions. The EDA objective is to obtain the maximum useful information from each piece of chemico-physical data because the perception and experience of a researcher cannot be sufficient to single out all the significant information. This step comprises descriptive univariate statistical algorithms (e.g. mean, normality assumption, skewness, kurtosis, variance, coefficient of variation), detection of outliers, cleansing of data matrix, measures of the analytical method quality (e.g. precision, sensibility, robustness, uncertainty, traceability) (Eurachem, 1998) and the use of basic algorithms such as box-and-whisker, stem-and-leaf, etc. [Pg.157]

Task Step Task Description Task Analysis... [Pg.1911]

The sorting task can also be applied to achieve a selection of products prior to a descriptive analysis. Piombino et al. (2004) developed a two-step strategy for the analysis of wine flavor. The sorting of a large number of samples by untrained subjects led to the selection of a representative subset of products that were evaluated, in a second step, by descriptive techniques. [Pg.156]

Hazard and risk analysis To determine the hazards and hazardous events of the EUC and the EUC control system (in all modes of operation), for all reasonably foreseeable circumstances including fault conditions and misuse. To determine the event sequences leading to the hazardous events determined. For the preliminary hazard and risk analysis, the scope will comprise the EUC, the EUC control system and human factors. Further h r analysis may be needed later as the design develops. Information acquired in step 2 Description of and information relating to the hazard and risk analysis. [Pg.24]

The classical microscopic description of molecular processes leads to a mathematical model in terms of Hamiltonian differential equations. In principle, the discretization of such systems permits a simulation of the dynamics. However, as will be worked out below in Section 2, both forward and backward numerical analysis restrict such simulations to only short time spans and to comparatively small discretization steps. Fortunately, most questions of chemical relevance just require the computation of averages of physical observables, of stable conformations or of conformational changes. The computation of averages is usually performed on a statistical physics basis. In the subsequent Section 3 we advocate a new computational approach on the basis of the mathematical theory of dynamical systems we directly solve a... [Pg.98]

An additional feature of ELECTRAS is a module which provides an introduction to various data analysis techniques One part of this module provides a typical work flow for data analysis. It explains the important steps when conducting a data analysis and describes the output of the data analysis methods. The second part gives a description of the methods offered. This modvJe can be used both as a guideline for novice users and as a reference for experts. [Pg.452]

Particulate interferents can be separated from dissolved analytes by filtration, using a filter whose pore size retains the interferent. This separation technique is important in the analysis of many natural waters, for which the presence of suspended solids may interfere in the analysis. Filtration also can be used to isolate analytes present as solid particulates from dissolved ions in the sample matrix. For example, this is a necessary step in gravimetry, in which the analyte is isolated as a precipitate. A more detailed description of the types of available filters is found in the discussion of precipitation gravimetry and particulate gravimetry in Chapter 8. [Pg.205]

The first step is to have a complete and detailed description of the system, process, or procedure under consideration. This must include physical properties of the materials, operating temperatures and pressures, detailed flow sheets, instmment diagrams of the process, materials of constmction, other detailed design specifications, and so forth. The more detailed and up-to-date this information is, the better the result of the analysis. [Pg.469]

Method of Moments The first step in the analysis of chromatographic systems is often a characterization of the column response to sm l pulse injections of a solute under trace conditions in the Henry s law limit. For such conditions, the statistical moments of the response peak are used to characterize the chromatographic behavior. Such an approach is generally preferable to other descriptions of peak properties which are specific to Gaussian behavior, since the statisfical moments are directly correlated to eqmlibrium and dispersion parameters. Useful references are Schneider and Smith [AJChP J., 14, 762 (1968)], Suzuki and Smith [Chem. Eng. ScL, 26, 221 (1971)], and Carbonell et al. [Chem. Eng. Sci., 9, 115 (1975) 16, 221 (1978)]. [Pg.1532]

Step I Defining the System - Collect the information needed to perform the analysis. Information needs include system descriptions, schematics, P IDs, logic diagrams, and operating procedures. Step 2 Establishing Inputs/Outputs - Every GO model begins with at least one input aiul may have many interfacing inputs. The output of the model is determined by the success criteria. [Pg.122]

The particular type of task analysis used in this example is hierarchical task analysis (HTA) (see Chapter 4). This has the advantage that it has been applied extensively in the chemical and other industries. As described in Chapter 4, HTA breaks down the overall objective of a task by successively describing it in increasing detail, to whatever level of description is required by the analysis. At each of the levels, a "plan" is produced that describes how the steps or functions at that level are to be executed. [Pg.212]

This section illustrates how the techniques described in Chapter 4 can be used to develop a procedure for the job of the top floor operator in the batch plant considered earlier. Two techniques are illustrated (i) a hierarchical task analysis (HTA) of the job, and (ii) a predictive human error analysis (PHEA) of the operations involved. HTA provides a description of how the job is actually done while PHEA identifies critical errors which can have an impact on the system in terms of safety or quality. The basic structure of the procedure is derived from the HTA which specifies in increasing detail the goals to be achieved. To emphasize critical task steps, various warnings and cautions can be issued based on the likely errors and recovery points generated by the PHEA. [Pg.317]

Based on the collected information, a decision/action (DA) chart was developed to provide an overview of the main decisions involved in the blowdown operation and the main influential factors such as time stress, conflicting responsibilities, risk of gas ignition etc. Task Analysis and Error Analysis of the blowdown operation were subsequently carried out to obtain a description of the sequence of tasks steps and the likely human error modes which could occur. [Pg.337]

The data for our analysis were collected from production runs of about 10000 steps, corresponding to a total simulation time of approximately 2 ps. The temperature for each simulation was chosen as that value for which experimental data are available. In general, the temperature lies about 50 K above the corresponding melting point. A detailed description of the computational features and the simulation procedure -including systems and temperatures - is given in [7]. [Pg.278]

The distinctive properties of densely tethered chains were first noted by Alexander [7] in 1977. His theoretical analysis concerned the end-adsorption of terminally functionalized polymers on a flat surface. Further elaboration by de Gennes [8] and by Cantor [9] stressed the utility of tethered chains to the description of self-assembled block copolymers. The next important step was taken by Daoud and Cotton [10] in 1982 in a model for star polymers. This model generalizes the... [Pg.33]

Measurements of the kinetics of the individual nucleation and growth steps in the reactions of several hydrated sulphates have been referred to in Sect. 1.2 though, perhaps surprisingly, these data were not combined in a kinetic analysis for the overall reaction in studies of the alums [51,431, 586] or NiS04 7 H20 [50]. Indeed, Lyakhov and Boldyrev [81], in one of the few reviews of the field, maintain that the satisfactory topochemi-cal description of dehydrations is a problem which at present remains... [Pg.131]

A systematic analysis of a process signal over (1) different segments of its time record and (2) various ranges of frequency (or scale) can provide a local (in time) and multiscale hierarchical description of the signal. Such description is needed if an intelligent computer-aided tool is to be con--structed in order to (1) localize in time the step and spike from the equipment faults (Fig. 1), or the onset of change in sensor noise characteristics, and (2) extract the slow drift and the periodic load disturbance. [Pg.209]

The starting step of the present work is a specific analysis of the solution of the Schrodinger equation for atoms (section 1). The successive steps for the application of this analysis to molecules are presented in the section 2 (description of the optimised orbitals near of the nuclei), 3 (description of the orbitals outside the molecule), and 4 (numerical test in the case of H ). The study of other molecules will be presented elsewhere. [Pg.19]


See other pages where Steps analysis, description is mentioned: [Pg.34]    [Pg.276]    [Pg.279]    [Pg.412]    [Pg.439]    [Pg.140]    [Pg.19]    [Pg.94]    [Pg.1019]    [Pg.189]    [Pg.576]    [Pg.452]    [Pg.2]    [Pg.12]    [Pg.802]    [Pg.165]    [Pg.87]    [Pg.140]    [Pg.3]    [Pg.169]    [Pg.411]    [Pg.607]    [Pg.282]    [Pg.103]    [Pg.70]    [Pg.199]    [Pg.93]    [Pg.321]    [Pg.230]    [Pg.212]   
See also in sourсe #XX -- [ Pg.90 ]




SEARCH



Descriptive analysis

© 2024 chempedia.info