Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steam reforming temperature

Phosphoric Acid Fuel Cell. Concentrated phosphoric acid is used for the electrolyte ia PAFC, which operates at 150 to 220°C. At lower temperatures, phosphoric acid is a poor ionic conductor (see Phosphoric acid and the phosphates), and CO poisoning of the Pt electrocatalyst ia the anode becomes more severe when steam-reformed hydrocarbons (qv) are used as the hydrogen-rich fuel. The relative stabiUty of concentrated phosphoric acid is high compared to other common inorganic acids consequentiy, the PAFC is capable of operating at elevated temperatures. In addition, the use of concentrated (- 100%) acid minimizes the water-vapor pressure so water management ia the cell is not difficult. The porous matrix used to retain the acid is usually sihcon carbide SiC, and the electrocatalyst ia both the anode and cathode is mainly Pt. [Pg.579]

Steam reforming of CH is commonly carried out at 750 to 900°C, thus at the lower operating temperature of MCFCs a high activity catalyst is required. The internal reforming of methane in IRMCFCs, where the steam-reforming reaction... [Pg.580]

A viable electrocatalyst operating with minimal polarization for the direct electrochemical oxidation of methanol at low temperature would strongly enhance the competitive position of fuel ceU systems for transportation appHcations. Fuel ceUs that directiy oxidize CH OH would eliminate the need for an external reformer in fuel ceU systems resulting in a less complex, more lightweight system occupying less volume and having lower cost. Improvement in the performance of PFFCs for transportation appHcations, which operate close to ambient temperatures and utilize steam-reformed CH OH, would be a more CO-tolerant anode electrocatalyst. Such an electrocatalyst would reduce the need to pretreat the steam-reformed CH OH to lower the CO content in the anode fuel gas. Platinum—mthenium alloys show encouraging performance for the direct oxidation of methanol. [Pg.586]

Coal can be processed to H2 by heat from a high temperature, gas-cooled reactor at a process efficiency of 60—70%. Process steps are coal hquefaction, hydrogasification of the Hquid, and steam reforming of gaseous products (179). [Pg.427]

High temperature steam reforming of natural gas accounts for 97% of the hydrogen used for ammonia synthesis in the United States. Hydrogen requirement for ammonia synthesis is about 336 m /t of ammonia produced for a typical 1000 t/d ammonia plant. The near-term demand for ammonia remains stagnant. Methanol production requires 560 m of hydrogen for each ton produced, based on a 2500-t/d methanol plant. Methanol demand is expected to increase in response to an increased use of the fuel—oxygenate methyl /-butyl ether (MTBE). [Pg.432]

Na.tura.1 Ga.s Reforma.tion. In the United States, most hydrogen is presently produced by natural gas reformation or methane—steam reforming. In this process, methane mixed with steam is typically passed over a nickel oxide catalyst at an elevated temperature. The reforming reaction is... [Pg.453]

The carbon monoxide concentration of gas streams is a function of many parameters. In general, increased carbon monoxide concentration is found with an increase in the carbon-to-hydrogen ratio in the feed hydrocarbon a decrease in the steam-to-feed-carbon ratio increase in the synthesis gas exit temperature and avoidance of reequiUbration of the gas stream at a temperature lower than the synthesis temperature. Specific improvement in carbon monoxide production by steam reformers is made by recycling by-product carbon dioxide to the process feed inlet of the reformer (83,84). This increases the relative carbon-to-hydrogen ratio of the feed and raises the equiUbrium carbon monoxide concentration of the effluent. [Pg.54]

There aie a number of major indusuial problems in the operation of the steam reforming of metlrane. These include the formation of carbon on the surface of the catalyst, the sulphidation of the catalyst by the H2S impurity in commercial natural gas, and die decline of catalytic activity due to Ostwald ripening of the supported catalyst particles by migration of catalyst atoms from the smaller to tire larger particles, as the temperamre is increased. A consideration of tire thermodynamics of the principal reaction alone would suggest that the reaction shifts more favourably to the completion of the reaction as the temperature is increased. [Pg.131]

In the steam reforming reaction, /rC02/p C0 = 2.08 (hr = 5.64) at this temperamre, and at lOOOK the results are hr A = 0.55 for carbon formation, and the PCO2/p CO ratio is 0.155 (hr A = 1.16), and tlrus the tendency for carbon formation passes from zero to unity in tlris temperature range. The presence of CO2 is not indicated in this reaction as given above, but its partial pressure can be obtained from data for the concunent reaction... [Pg.131]

Catalytic methanation is the reverse of the steam reforming reaction. Hydrogen reacts with carbon monoxide and carbon dioxide, converting them to methane. Methanation reactions are exothermic, and methane yield is favored at lower temperatures ... [Pg.142]

The extent to which anode polarization affects the catalytic properties of the Ni surface for the methane-steam reforming reaction via NEMCA is of considerable practical interest. In a recent investigation62 a 70 wt% Ni-YSZ cermet was used at temperatures 800° to 900°C with low steam to methane ratios, i.e., 0.2 to 0.35. At 900°C the anode characteristics were i<>=0.2 mA/cm2, Oa=2 and ac=1.5. Under these conditions spontaneously generated currents were of the order of 60 mA/cm2 and catalyst overpotentials were as high as 250 mV. It was found that the rate of CH4 consumption due to the reforming reaction increases with increasing catalyst potential, i.e., the reaction exhibits overall electrophobic NEMCA behaviour with a 0.13. Measured A and p values were of the order of 12 and 2 respectively.62 These results show that NEMCA can play an important role in anode performance even when the anode-solid electrolyte interface is non-polarizable (high Io values) as is the case in fuel cell applications. [Pg.410]

The steam reforming of naphthalene was conducted on the fixed bed of catalyst (bed temperature 1173 K, GHSV 3000h ). The detail of the experiment was described in previous papers [7, 8],... [Pg.518]

Fig. 4 shows the evolution of temperature in the methanol steam reformer combined with a combustion plate equipped with a gas distributor. In this case hydrogen was used as a fuel for start-up at room temperature. As the reformer temperature reached near 300°C in about 5 min, methanol/water vapor was introduced to the reformer. It can be clearly seen that temperature within the reformer became relatively uniform after 25 min of operation. [Pg.659]

Fig. 4. Evolution of temperature in the methanol steam reformer during the startup and steady-state operation... Fig. 4. Evolution of temperature in the methanol steam reformer during the startup and steady-state operation...

See other pages where Steam reforming temperature is mentioned: [Pg.68]    [Pg.25]    [Pg.26]    [Pg.489]    [Pg.68]    [Pg.25]    [Pg.26]    [Pg.489]    [Pg.30]    [Pg.169]    [Pg.216]    [Pg.577]    [Pg.579]    [Pg.579]    [Pg.580]    [Pg.495]    [Pg.419]    [Pg.422]    [Pg.422]    [Pg.423]    [Pg.427]    [Pg.428]    [Pg.342]    [Pg.368]    [Pg.1319]    [Pg.2413]    [Pg.132]    [Pg.388]    [Pg.1125]    [Pg.525]    [Pg.796]    [Pg.226]    [Pg.180]    [Pg.69]    [Pg.69]    [Pg.422]    [Pg.517]    [Pg.541]    [Pg.541]    [Pg.629]    [Pg.660]   
See also in sourсe #XX -- [ Pg.65 , Pg.68 ]




SEARCH



High-temperature applications steam methane reforming

High-temperature steam reforming burners

High-temperature steam reforming catalysts

High-temperature steam reforming commercial

High-temperature steam reforming designs

High-temperature steam reforming furnace

High-temperature steam reforming insulation

High-temperature steam reforming process design

High-temperature steam reforming reaction tubes

High-temperature steam reforming reactor design

Steam reformation

Steam reforming

Steam reforming high-temperature

Steam reforming process temperature profile

Steam temperature

Temperature, effect steam reforming

© 2024 chempedia.info