Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Steady state factors

Besides measuring and T2 for nuclei such as C or N, relaxation studies for these nuclei also include measurements of the NOE factor, cf equation B 1.13.6. Knowing the (pj) and the steady-state NOE... [Pg.1510]

For example, if the molecular structure of one or both members of the RP is unknown, the hyperfine coupling constants and -factors can be measured from the spectrum and used to characterize them, in a fashion similar to steady-state EPR. Sometimes there is a marked difference in spin relaxation times between two radicals, and this can be measured by collecting the time dependence of the CIDEP signal and fitting it to a kinetic model using modified Bloch equations [64]. [Pg.1616]

Reactions in porous catalyst pellets are Invariably accompanied by thermal effects associated with the heat of reaction. Particularly In the case of exothermic reactions these may have a marked influence on the solutions, and hence on the effectiveness factor, leading to effectiveness factors greater than unity and, In certain circumstances, multiple steady state solutions with given boundary conditions [78]. These phenomena have attracted a great deal of interest and attention in recent years, and an excellent account of our present state of knowledge has been given by Arls [45]. [Pg.156]

Because mass flow bins have stable flow patterns that mimic the shape of the bin, permeabihty values can be used to calculate critical, steady-state discharge rates from mass flow hoppers. Permeabihty values can also be used to calculate the time required for fine powders to settle in bins and silos. In general, permeabihty is affected by particle size and shape, ie, permeabihty decreases as particle size decreases and the better the fit between individual particles, the lower the permeabihty moisture content, ie, as moisture content increases, many materials tend to agglomerate which increases permeabihty and temperature, ie, because the permeabihty factor, K, is inversely proportional to the viscosity of the air or gas in the void spaces, heating causes the gas to become more viscous, making the sohd less permeable. [Pg.555]

Catalyst Effectiveness. Even at steady-state, isothermal conditions, consideration must be given to the possible loss in catalyst activity resulting from gradients. The loss is usually calculated based on the effectiveness factor, which is the diffusion-limited reaction rate within catalyst pores divided by the reaction rate at catalyst surface conditions (50). The effectiveness factor E, in turn, is related to the Thiele modulus,

first-order rate constant, a the internal surface area, and the effective diffusivity. It is desirable for E to be as close as possible to its maximum value of unity. Various formulas have been developed for E, which are particularly usehil for analyzing reactors that are potentially subject to thermal instabilities, such as hot spots and temperature mnaways (1,48,51). [Pg.516]

Thus when an electric field is appHed to a soHd material the mobile charge carriers are accelerated to an average drift velocity v, which, under steady-state conditions, is proportional to the field strength. The proportionality factor is defined as the mobility, = v/E. An absolute mobility defined as the velocity pet unit driving force acting on the particle, is given as ... [Pg.350]

In applying this concept, the factor of particle size must be continuously borne in mind. A heterodisperse system can reach a steady state wherein the smaller particles are agglomerated and the larger particles are dispersed, giving the apparent effect of an equiUbrium. In ideal monodisperse systems under steady conditions, however, no such effects are noted. [Pg.532]

For straight metal pipe under internal pressure the formula for minimum reqiiired w thickness is applicable for D /t ratios greater than 6. Tme more conservative Barlow and Lame equations may also be used. Equation (10-92) includes a factor Y varying with material and temperature to account for the redistribution of circumferential stress which occurs under steady-state creep at high temperature and permits slightly lesser thickness at this range. [Pg.981]

Continuous filters are most attractive when the process apphcation is a steady-state continuous one, but the rate at which cake Forms and the magnitude of production rate are sometimes overriding factors. A rotaiy vacuum filter, for example, is a dubious choice if a 3-mm (0.12-in) cake will not form under normal vacuum in less than 5 min and if less than 1.4 mVh (50 ftVh) of wet cake is produced. Upper producdion-rate limits to the practicality of batch units are harder to... [Pg.1723]

Usually, diffusivity and kinematic viscosity are given properties of the feed. Geometiy in an experiment is fixed, thus d and averaged I are constant. Even if values vary somewhat, their presence in the equations as factors with fractional exponents dampens their numerical change. For a continuous steady-state experiment, and even for a batch experiment over a short time, a very useful equation comes from taking the logarithm of either Eq. (22-86) or (22-89) then the partial derivative ... [Pg.2040]

The general case is that of steady-state flow, and the thermal conductivity factor is a function of the temperature. In the unsteady state the temperature of the system changes with time, and energy is stored in the system or released from the system reduced. The storage capacity is... [Pg.110]

This simple steady-state form is amenable to analytical solution and the application of an integrating factor followed by subsequent integration yields... [Pg.285]

We have seen that in a steady field Hq a small excess, no, of nuclei are in the lower energy level. The absorption of rf energy reduces this excess by causing transitions to the upper spin state. This does not result in total depletion of the lower level, however, because this effect is opposed by spin-lattice relaxation. A steady state is reached in which a new steady value, n, of excess nuclei in the lower state is achieved. Evidently n can have a maximum value of o and a minimum value of zero. If n is zero, absorption of rf energy will cease, whereas if n = no, a steady-state absorption is observed. It is obviously desirable that the absorption be time independent or. in other words, that s/no be close to unity. Theory gives an expression for this ratio, which is called Zq, the saturation factor ... [Pg.159]

As demonstrated, Eq. (7) gives complete information on how the weight fraction influences the blend viscosity by taking into account the critical stress ratio A, the viscosity ratio 8, and a parameter K, which involves the influences of the phenomenological interface slip factor a or ao, the interlayer number m, and the d/Ro ratio. It was also assumed in introducing this function that (1) the TLCP phase is well dispersed, fibrillated, aligned, and just forms one interlayer (2) there is no elastic effect (3) there is no phase inversion of any kind (4) A < 1.0 and (5) a steady-state capillary flow under a constant pressure or a constant wall shear stress. [Pg.687]

Steady-state voltage regulation Acceptable transitent voltage variation Non-linearity characteristics of load current Percentage distortion in voltage Frequency tolerance Power factor of load Inmsh upon switch-on... [Pg.225]

This method can also be used to calculate the catalyst retention factor. The above equations assume steady-state operation, constant unit inventory, and constant addition and loss rate. [Pg.114]

The time factor in stepwise potentiostatic or potentiodynamic polarisation experiments is very important, because large differences can be caused by changes in the scanning rate. Since the steady state depends on the particular system and conditions of exposure, no set rule exists for the magnitude or frequency of potential changes. Chatfield etal. have studied the Ni/H2S04 system and have shown how becomes more passive with increase in sweep rate. [Pg.1109]

In a steady-state process, a gas is absorbed in a liquid with which it undergoes an irreversible reaction. The mass transfer process is governed by Fick s law, and the liquid is sufficiently deep for it to be regarded as effectively infinite in depth. On increasing the temperature, the concentration of reactant at the liquid surface CAi falls to 0.8 times its original value. The diffusivity is unchanged, but the reaction constant increases by a factor of 1.35. It is found that the mass transfer rate at the liquid surface falls to 0.83 times its original value. What is the order of the chemical reaction ... [Pg.629]


See other pages where Steady state factors is mentioned: [Pg.157]    [Pg.126]    [Pg.157]    [Pg.126]    [Pg.608]    [Pg.335]    [Pg.1099]    [Pg.1607]    [Pg.140]    [Pg.587]    [Pg.429]    [Pg.97]    [Pg.512]    [Pg.510]    [Pg.374]    [Pg.53]    [Pg.59]    [Pg.97]    [Pg.438]    [Pg.720]    [Pg.738]    [Pg.2145]    [Pg.2560]    [Pg.97]    [Pg.218]    [Pg.54]    [Pg.896]    [Pg.264]    [Pg.87]    [Pg.153]    [Pg.6]    [Pg.73]    [Pg.312]    [Pg.181]    [Pg.387]   
See also in sourсe #XX -- [ Pg.76 ]




SEARCH



Effectiveness factor multiple steady states

Factors Affecting the Steady State Kinetic Constants

Steady state orientation factor

Steady-State Conduction and Shape Factors

Steady-state enhancement factor

© 2024 chempedia.info