Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Statistical mechanics time-dependent

The equilibrium state for a gas of monoatomic particles is described by a spatially unifonn, time independent distribution fiinction whose velocity dependence has the fomi of the Maxwell-Boltzmaim distribution, obtained from equilibrium statistical mechanics. That is,/(r,v,t) has the fomi/" (v) given by... [Pg.666]

Green M S 1954 Markov random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids J. Chem. Phys. 22 398... [Pg.715]

As reactants transfonn to products in a chemical reaction, reactant bonds are broken and refomied for the products. Different theoretical models are used to describe this process ranging from time-dependent classical or quantum dynamics [1,2], in which the motions of individual atoms are propagated, to models based on the postidates of statistical mechanics [3], The validity of the latter models depends on whether statistical mechanical treatments represent the actual nature of the atomic motions during the chemical reaction. Such a statistical mechanical description has been widely used in imimolecular kinetics [4] and appears to be an accurate model for many reactions. It is particularly instructive to discuss statistical models for unimolecular reactions, since the model may be fomuilated at the elementary microcanonical level and then averaged to obtain the canonical model. [Pg.1006]

If it cannot be guaranteed that the adsorbate remains in local equilibrium during its time evolution, then a set of macroscopic variables is not sufficient and an approach based on nonequihbrium statistical mechanics involving time-dependent distribution functions must be invoked. The kinetic lattice gas model is an example of such a theory [56]. It is derived from a Markovian master equation, but is not totally microscopic in that it is based on a phenomenological Hamiltonian. We demonstrate this approach... [Pg.462]

A theory for nonequilibrium quantum statistical mechanics can be developed using a time-dependent, Hermitian, Hamiltonian operator Hit). In the quantum case it is the wave functions [/ that are the microstates analogous to a point in phase space. The complex conjugate / plays the role of the conjugate point in phase space, since, according to Schrodinger, it has equal and opposite time derivative to v /. [Pg.57]

Monte Carlo heat flow simulation, 69-70 nonequilibrium statistical mechanics, microstate transitions, 44 46 nonequilibrium thermodynamics, 7 time-dependent mechanical work, 52-53 transition probability, 53-57 Angular momentum, one- vs. three-photon... [Pg.277]

Nonequilibrium molecular dynamics (NEMD) Monte Carlo heat flow simulation, 71-74 theoretical background, 6 Nonequilibrium probability, time-dependent mechanical work, 51-53 Nonequilibrium quantum statistical mechanics, 57-58... [Pg.284]

In equilibrium statistical mechanics involving quantum effects, we need to know the density matrix in order to calculate averages of the quantities of interest. This density matrix is the quantum analog of the classical Boltzmann factor. It can be obtained by solving a differential equation very similar to the time-dependent Schrodinger equation... [Pg.395]

They would become the stars of Prigoginian statistical mechanics. Their importance lies in the fact that, whenever it is possible to determine these variables by a canonical transformation of the initial phase space variables, one obtains a description with the following properties. The action variables / ( = 1,2,..., N, where N is the number of degrees of freedom of the system) are invariants of motion, whereas the angles a increase linearly in time, with frequencies generally action-dependent. The integration of the equations... [Pg.29]

A unified approach to the glass transition, viscoelastic response and yield behavior of crosslinking systems is presented by extending our statistical mechanical theory of physical aging. We have (1) explained the transition of a WLF dependence to an Arrhenius temperature dependence of the relaxation time in the vicinity of Tg, (2) derived the empirical Nielson equation for Tg, and (3) determined the Chasset and Thirion exponent (m) as a function of cross-link density instead of as a constant reported by others. In addition, the effect of crosslinks on yield stress is analyzed and compared with other kinetic effects — physical aging and strain rate. [Pg.124]

Ilya Prigogine, the founding editor of Advances in Chemical Physics, died May 25, 2003. He was born in Moscow, fled Russia with his family in 1921, and, after brief periods in Lithuania and Germany, settled in Belgium, which was his home for 80 years. His many profound contributions to the theory of irreversible processes included extensions of both macroscopic thermodynamic analysis and statistical mechanical analysis of time-dependent processes and the approach to equilibrium. While sometimes controversial, these contributions were uniformly of outstanding intellectual merit and always addressed to the most fundamental issues they earned him international repute and the Nobel Prize in Chemistry in 1977. Arguably equally important was his creation of a school of theoretical chemical physics centered at the University of Brussels, as well as the mentoring of numerous creative and productive scientists. [Pg.392]

The indices k in the Ihs above denote a pair of basis operators, coupled by the element Rk. - The indices n and /i denote individual interactions (dipole-dipole, anisotropic shielding etc) the double sum over /x and /x indicates the possible occurrence of interference terms between different interactions [9]. The spectral density functions are in turn related to the time-correlation functions (TCFs), the fundamental quantities in non-equilibrium statistical mechanics. The time-correlation functions depend on the strength of the interactions involved and on their modulation by stochastic processes. The TCFs provide the fundamental link between the spin relaxation and molecular dynamics in condensed matter. In many common cases, the TCFs and the spectral density functions can, to a good approximation, be... [Pg.328]

The need to reliably describe liquid systems for practical purposes as condensed matter with high mobility at a given finite temperature initiated attempts, therefore, to make use of statistical mechanical procedures in combination with molecular models taking into account structure and reactivity of all species present in a liquid and a solution, respectively. The two approaches to such a description, namely Monte Carlo (MC) simulations and molecular dynamics (MD), are still the basis for all common theoretical methods to deal with liquid systems. While MC simulations can provide mainly structural and thermodynamical data, MD simulations give also access to time-dependent processes, such as reaction dynamics and vibrational spectra, thus supplying — connected with a higher computational effort — much more insight into the properties of liquids and solutions. [Pg.144]

Kinetic Theory. In the kinetic theory and nonequilibrium statistical mechanics, fluid properties are associated with averages of pruperlies of microscopic entities. Density, for example, is the average number of molecules per unit volume, times the mass per molecule. While much of the molecular theory in fluid dynamics aims to interpret processes already adequately described by the continuum approach, additional properties and processes are presented. The distribution of molecular velocities (i.e., how many molecules have each particular velocity), time-dependent adjustments of internal molecular motions, and momentum and energy transfer processes at boundaries are examples. [Pg.655]

The present state in the theory of time-dependent processes in liquids is the following. We know which correlation functions determine the results of certain physical measurements. We also know certain general properties of these correlation functions. However, because of the mathematical complexities of the V-body problem, the direct calculation of the fulltime dependence of these functions is, in general, an extremely difficult affair. This is analogous to the theory of equilibrium properties of liquids. That is, in equilibrium statistical mechanics the equilibrium properties of a system can be found if certain multidimensional integrals involving the system s partition function are evaluated. However, the exact evaluation of these integrals is usually extremely difficult especially for liquids. [Pg.60]

During the production phase, the positions, velocities, and accelerations created at each step in time were put on magnetic tapes. These tapes were later analyzed for the time-dependent and independent properties of the system. From a statistical mechanical standpoint, the data on these tapes may be viewed in one of two ways ... [Pg.66]

In Section I we introduce the gas-polymer-matrix model for gas sorption and transport in polymers (10, LI), which is based on the experimental evidence that even permanent gases interact with the polymeric chains, resulting in changes in the solubility and diffusion coefficients. Just as the dynamic properties of the matrix depend on gas-polymer-matrix composition, the matrix model predicts that the solubility and diffusion coefficients depend on gas concentration in the polymer. We present a mathematical description of the sorption and transport of gases in polymers (10, 11) that is based on the thermodynamic analysis of solubility (12), on the statistical mechanical model of diffusion (13), and on the theory of corresponding states (14). In Section II we use the matrix model to analyze the sorption, permeability and time-lag data for carbon dioxide in polycarbonate, and compare this analysis with the dual-mode model analysis (15). In Section III we comment on the physical implication of the gas-polymer-matrix model. [Pg.117]

The first volume contained nine state-of-the-art chapters on fundamental aspects, on formalism, and on a variety of applications. The various discussions employ both stationary and time-dependent frameworks, with Hermitian and non-Hermitian Hamiltonian constructions. A variety of formal and computational results address themes from quantum and statistical mechanics to the detailed analysis of time evolution of material or photon wave packets, from the difficult problem of combining advanced many-electron methods with properties of field-free and field-induced resonances to the dynamics of molecular processes and coherence effects in strong electromagnetic fields and strong laser pulses, from portrayals of novel phase space approaches of quantum reactive scattering to aspects of recent developments related to quantum information processing. [Pg.353]

A complete and detailed analysis of the formal properties of the QCL approach [5] has revealed that while this scheme is internally consistent, inconsistencies arise in the formulation of a quantum-classical statistical mechanics within such a framework. In particular, the fact that time translation invariance and the Kubo identity are only valid to O(h) have implications for the calculation of quantum-classical correlation functions. Such an analysis has not yet been conducted for the ILDM approach. In this chapter we adopt an alternative prescription [6,7]. This alternative approach supposes that we start with the full quantum statistical mechanical structure of time correlation functions, average values, or, in general, the time dependent density, and develop independent approximations to both the quantum evolution, and to the equilibrium density. Such an approach has proven particularly useful in many applications [8,9]. As was pointed out in the earlier publications [6,7], the consistency between the quantum equilibrium structure and the approximate... [Pg.416]

The form of the expressions in Eqs (5.98) and (5.114) is closely related to the classical expressions for the rate constant given in Section 5.1. The quantum mechanical trace becomes in classical statistical mechanics an integral over phase space [9] and the Heisenberg operators become the corresponding classical (time-dependent) functions of coordinates and momenta [8]. Thus, Eq. (5.78) is the classical version of Eq. (5.114). Furthermore, note that Eq. (5.98) is related to Eq. (5.49), i.e., the relevant classical (one-way) flux through Ro, at a given time, becomes S(R - Ro)(p/p)9(p/p), exactly as in Eq. (5.49). [Pg.135]


See other pages where Statistical mechanics time-dependent is mentioned: [Pg.536]    [Pg.51]    [Pg.2249]    [Pg.39]    [Pg.317]    [Pg.470]    [Pg.440]    [Pg.7]    [Pg.284]    [Pg.285]    [Pg.287]    [Pg.490]    [Pg.262]    [Pg.152]    [Pg.99]    [Pg.46]    [Pg.29]    [Pg.32]    [Pg.950]    [Pg.256]    [Pg.108]    [Pg.782]    [Pg.185]    [Pg.75]    [Pg.437]    [Pg.100]    [Pg.37]    [Pg.150]    [Pg.409]    [Pg.160]   
See also in sourсe #XX -- [ Pg.111 , Pg.112 , Pg.113 , Pg.114 , Pg.115 , Pg.116 , Pg.117 , Pg.118 ]




SEARCH



Dependence mechanism

Mechanics Dependency

Timing mechanisms

© 2024 chempedia.info