Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Standard-state potential, determining

Despite the apparent ease of determining an analyte s concentration using the Nernst equation, several problems make this approach impractical. One problem is that standard-state potentials are temperature-dependent, and most values listed in reference tables are for a temperature of 25 °C. This difficulty can be overcome by maintaining the electrochemical cell at a temperature of 25 °C or by measuring the standard-state potential at the desired temperature. [Pg.470]

Determining the Standard-State Potential To extract the standard-state potential, or formal potential, for reaction 11.34 from a voltammogram, it is necessary to rewrite the Nernst equation... [Pg.514]

Electrochemical Reversibility and Determination of m In deriving a relationship between 1/2 and the standard-state potential for a redox couple (11.41), we noted that the redox reaction must be reversible. How can we tell if a redox reaction is reversible from its voltammogram For a reversible reaction, equation 11.40 describes the voltammogram. [Pg.527]

One method for the determination of H3ASO3 is by a coulometric titration using as a titrant. The relevant reactions and standard-state potentials are summarized as follows. [Pg.537]

In summary, a reference state or standard state must be defined for each component in the system. The definition may be quite arbitrary and may be defined for convenience for any thermodynamic system, but the two states cannot be defined independently. When the reference state is defined, the standard state is determined conversely, when the standard state is defined, the reference state is determined. There are certain conventions that have been developed through experience but, for any particular problem, it is not necessary to hold to these conventions. These conventions are discussed in the following sections. The general practice is to define the reference state. This state is then a physically realizable state and is the one to which experimental measurements are referred. The standard state may or may not be physically realizable, and in some cases it is convenient to speak of the standard state for the chemical potential, for the enthalpy, for the entropy,... [Pg.177]

Since E, the standard-state potential for the Q—HQ redox couple, is a constant (0.699 volt), equation 7.12 reveals that the ratio of reduced to oxidized indicator at any particular pH is determined by the of the solution. At a fixed pH, for example,... [Pg.250]

Exercise 6,7. By (a) using the rule just stated above, and (b) by calculating the standard cell potential, determine whether, under standard conditions, Fe (aq) will oxidize Cl"(aq) to Cl2(g) to a significant extent. [Pg.124]

Ion-selective electrodes can be incorporated in flow cells to monitor the concentration of an analyte in standards and samples that are pumped through the flow cell. As the analyte passes through the cell, a potential spike is recorded instead of a steady-state potential. The concentration of K+ in serum has been determined in this fashion, using standards prepared in a matrix of 0.014 M NaCl. ... [Pg.536]

For a substance in a given system the chemical potential gi has a definite value however, the standard potentials and activity coefficients have different values in these three equations. Therefore, the selection of a concentration scale in effect determines the standard state. [Pg.255]

It is clear from what has already been stated that standard reduction potentials may be employed to determine whether redox reactions are sufficiently complete... [Pg.69]

The isopiestic method is based upon the equality of the solvent chemical potentials and fugacities when solutions of different solutes, but the same solvent, are allowed to come to equilibrium together. A method in which a solute is allowed to establish an equilibrium distribution between two solvents has also been developed to determine activities of the solute, usually based on the Henry s law standard state. In this case, one brings together two immiscible solvents, A and B, adds a solute, and shakes the mixture to obtain two phases that are in equilibrium, a solution of the solute in A with composition. vA, and a solution of the solute in B with composition, a . [Pg.311]

We now have the foundation for applying thermodynamics to chemical processes. We have defined the potential that moves mass in a chemical process and have developed the criteria for spontaneity and for equilibrium in terms of this chemical potential. We have defined fugacity and activity in terms of the chemical potential and have derived the equations for determining the effect of pressure and temperature on the fugacity and activity. Finally, we have introduced the concept of a standard state, have described the usual choices of standard states for pure substances (solids, liquids, or gases) and for components in solution, and have seen how these choices of standard states reduce the activity to pressure in gaseous systems in the limits of low pressure, to concentration (mole fraction or molality) in solutions in the limit of low concentration of solute, and to a value near unity for pure solids or pure liquids at pressures near ambient. [Pg.383]

Electrodes of the second type can formally be regarded as a special case of electrodes of the first type where the standard state (when E = °) corresponds not to flAg+ = 1 but to a value of == 10 mol/L, which is established in a KCl solution of unit activity. In this case, the concentration of the potential-determining cation can be varied by varying the concentration of an anion, which might be called the controlling ion. The oxides and hydroxides of most metals (other than the alkali metals) are poorly soluble in alkaline solutions hence, almost all metal electrodes in alkaline solutions are electrodes of the second type. [Pg.47]

Note, in using Equations 50 and 53 above, that tabulations of thermodynamic data for electrolytes tend to employ a 1 molar ess concentration for all species in solution. For situations defined to have a standard-state pH value different from 0 (which corresponds to a 1 molar concentration of solvated protons), the standard-state chemical potentials for anions and cations are determined as... [Pg.73]

Redox half-reactions are often written for brevity as, for example, Li+ + e - Li. with the state symbols omitted. The electrode system represented by the half-reaction may also be written as Li+ /Li. The standard redox potentials for ion-ion redox systems can be determined by setting up the relevant half-cell and measuring the potential at 298 K relative to a standard hydrogen electrode. For example, the standard redox potential for the half-reactions... [Pg.99]

The Gibbs energy of adsorption is a measure of adsorbate-metal interactions. Its values depend, however, on the choice of standard states for the chemical potentials of the components involved in the process. Therefore AG° values determined for different systems can only be compared if they refer to the same standard-state conditions. AG° values of adsorption of thiourea (TU) on several metallic electrodes, calculated for the most often used standard states, are presented in Table 1. [Pg.41]

Determine the standard cell potential for each of the following reactions. State whether each reaction is spontaneous or non-spontaneous. [Pg.561]

Although we cannot determine its absolute value, the chemical potential of acomponent of a solution has a value that is independent of the choice of concentration scale and standard state. The standard chemical potential, the activity, and the activity coefficient have values that do depend on the choice of concentration scale and standard state. To complete the definitions we have given, we must define the standard states we wish to use. [Pg.359]

The relative thermodynamic stability of two complexes can be predicted from a comparison of then-standard potentials. Determine which complex of the following pair is the more stable and state your... [Pg.944]

The thermodynamic quantity 0y is a reduced standard-state chemical potential difference and is a function only of T, P, and the choice of standard state. The principal temperature dependence of the liquidus and solidus surfaces is contained in 0 j. The term is the ratio of the deviation from ideal-solution behavior in the liquid phase to that in the solid phase. This term is consistent with the notion that only the difference between the values of the Gibbs energy for the solid and liquid phases determines which equilibrium phases are present. Expressions for the limits of the quaternary phase diagram are easily obtained (e.g., for a ternary AJB C system, y = 1 and xD = 0 for a pseudobinary section, y = 1, xD = 0, and xc = 1/2 and for a binary AC system, x = y = xAC = 1 and xB = xD = 0). [Pg.146]

So far it has not been possible to measure the chemical potentials of the components in the mesophases. This measurement is possible, however, in solutions which are in equilibrium with the mesophases. If pure water is taken as the standard state, the activity of water in equilibrium with the D and E phases in the system NaC8-decanol-water is more than 0.8 (4). From these activities in micellar solutions, the activity of the fatty acid salt has sometimes been calculated. The salt is incorrectly treated as a completely dissociated electrolyte. The activity of the fatty acid in solutions of short chain carboxylates has also been determined by gas chromatography from these determinations the carboxylate anion activity can be determined (18). Low CMC values for the carboxylate are obtained (15). The same method has shown that the activity of solubilized pentanol in octanoate solutions is still very low when the solution is in equilibrium with phase D (Figure 10) (15). [Pg.30]

Marcus has introduced a model for, S N 2 reactions of the ET type based on two interacting states which takes into account the relevant bond energies, standard electrode potentials, solvent contributions, and steric effects.87 The rate constant for intramolecular electron transfer between reduced and oxidized hydrazine units in the radical cation of the tetraazahexacyclotetradecane derivative (43) and its analogues has been determined by simulation of then variable temperature ESR spectra.88 The same researchers also reported then studies of the SET processes of other polycyclic dihydrazine systems.89,90... [Pg.149]


See other pages where Standard-state potential, determining is mentioned: [Pg.515]    [Pg.508]    [Pg.243]    [Pg.355]    [Pg.55]    [Pg.412]    [Pg.91]    [Pg.229]    [Pg.155]    [Pg.339]    [Pg.36]    [Pg.96]    [Pg.68]    [Pg.401]    [Pg.520]    [Pg.540]    [Pg.34]    [Pg.104]    [Pg.87]    [Pg.410]    [Pg.224]    [Pg.848]    [Pg.1621]    [Pg.152]    [Pg.27]    [Pg.175]   


SEARCH



Potential standard

Potential-determining

Potentials determination

Potentials, standardization

Standard determination

Standard potential determination

Standard state

Standard-state potential, determining voltammetry

© 2024 chempedia.info