Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stability pH and

Long-term column stability (pH and temperature) and batch-to-batch reproducibility are probably the most important quality characteristics to be considered in column selection in the pharmaceutical industry. Nevertheless,... [Pg.76]

Dissociation of the second proton is insignificant. The pH of its aqueous solutions can be measured reproducibly with a glass electrode, but a correction dependent on the concentration must be added to obtain the tme pH value. Correction values for the most common commercial solutions are Hsted in Table 3. The apparent pH of commercial product solutions can be affected by the type and amount of stabilizers added, and many times the pH is purposely adjusted to a grade specification range. [Pg.471]

Complexing agents, which act as buffers to help control the pH and maintain control over the free metal—salt ions available to the solution and hence the ion concentration, include citric acid, sodium citrate, and sodium acetate potassium tartrate ammonium chloride. Stabilizers, which act as catalytic inhibitors that retard the spontaneous decomposition of the bath, include fluoride compounds thiourea, sodium cyanide, and urea. Stabilizers are typically not present in amounts exceeding 10 ppm. The pH of the bath is adjusted. [Pg.528]

Buffers are frequently added to emulsion recipes and serve two main purposes. The rate of hydrolysis of vinyl acetate and some comonomers is pH-sensitive. Hydrolysis of monomer produces acetic acid, which can affect the initiator, and acetaldehyde which as a chain-transfer agent may lower the molecular weight of the polymer undesirably. The rates of decomposition of some initiators are affected by pH and the buffer is added to stabilize those rates, since decomposition of the initiator frequently changes the pH in an unbuffered system. Vinyl acetate emulsion polymerization recipes are usually buffered to pH 4—5, eg, with phosphate or acetate, but buffering at neutral pH with bicarbonate also gives excellent results. The pH of most commercially available emulsions is 4—6. [Pg.464]

Citric acid is utilized in a large variety of food and industrial appHcations because of its unique combination of properties. It is used as an acid to adjust pH, a buffer to control or maintain pH, a chelator to form stable complexes with multivalent metal ions, and a dispersing agent to stabilize emulsions and other multiphase systems (see Dispersants). In addition, it has a pleasant, clean, tart taste making it useful in food and beverage products. [Pg.185]

Specifications and Analysis. Cyanamide is sold as anhydrous, aqueous 50%, and calcium cyanamide. Aqueous 50% cyanamide solutions contain a buffer additive, usually 2% NaH2P04, to stabilize the pH and prevent formation of dicyandiamide and urea. Calcium cyanamide is stable under dry conditions. Table 2 gives a typical analysis of the three commercial forms. [Pg.369]

Subtilisins are a group of serine proteinases that are produced by different species of bacilli. These enzymes are of considerable commercial interest because they are added to the detergents in washing powder to facilitate removal of proteinaceous stains. Numerous attempts have therefore recently been made to change by protein engineering such properties of the subtilisin molecule as its thermal stability, pH optimum, and specificity. In fact, in 1988 subtilisin mutants were the subject of the first US patent granted for an engineered protein. [Pg.215]

We only briefly mentioned alkaline stabilization, but in reality this is a variation of sludge pasteurization. The basic process uses elevated pH and temperature to produce a stabilized, disinfected product. The two alkaline stabilization systems most common in the U.S. are a lime pasteurization system and a cement kiln dust pasteurization system. The lime pasteurization product has a wet-cake consistency, while the kiln dust pasteurization has a moist solid like consistency. Both products can be transported to agricultural areas for ultimate use. Literature studies show that the kiln dust product can capture a marketable value of 6.60/Mg ( 6.00/ton) to offset hauling costs, while the lime product does not appear to be able to capture financial credits for product revenues at this point in time. The reasons for this are not entirely clear. [Pg.572]

In equation (q) only the fully ionised form of EDTA, i.e. the ion Y4 , has been taken into account, but at low pH values the species HY3, H2Y2, H3 Y and even undissociated H4Y may well be present in other words, only a part of the EDTA uncombined with metal may be present as Y4. Further, in equation (q) the metal ion M"+ is assumed to be uncomplexed, i.e. in aqueous solution it is simply present as the hydrated ion. If, however, the solution also contains substances other than EDTA which can complex with the metal ion, then the whole of this ion uncombined with EDTA may no longer be present as the simple hydrated ion. Thus, in practice, the stability of metal-EDTA complexes may be altered (a) by variation in pH and (b) by the presence of other complexing agents. The stability constant of the EDTA complex will then be different from the value recorded for a specified pH in pure aqueous solution the value recorded for the new conditions is termed the apparent or conditional stability constant. It is clearly necessary to examine the effect of these two factors in some detail. [Pg.59]

NOTE Under normal boiler operating conditions, the pH required to ensure relative waterside stability (operational stability pH) for copper and copper alloys is typically 8.8 to 9.2, and for steel alloys it is 9.2 to 11.0. However, for any specific system the precise operational stability pH range is a function of boiler pressure, temperature, and system metallurgy. [Pg.524]

The effect of pH and complexation on the relative stabilities of the oxidation states of Pu is discussed. A set of ionic radii are presented for Pu in different oxidation states and different coordination numbers. A model for Pu hydration is presented and the relation between hydrolysis and oxidation state evaluated, including the problem of hydrous polymerization. [Pg.214]

Prediction of the chemistry of plutonium in near-neutral aqueous media is highly dependent on understanding reactions that may be occurring in such media. One of the most important parameters is the stability and nature of complexes formed by plutonium in its four common oxidation states. Because Pu(III), Pu(IV), and Pu(VI) are readily hydrolysed, complexation reactions generally are studied in mildly to strongly acidic media. Data determined in acid media (and frequently at high concentrations of plutonium) then are used to predict the chemical speciation of plutonium at near-neutral pH and low concentrations of the metal ion. [Pg.251]

Co-administration of ofloxacin and chitosan in eyedrops increased the bioavailabUity of the antibiotic [290]. Trimethyl chitosan was more effective because of its solubility (plain chitosan precipitates at the pH of the tear fluid). On the other hand, N-carboxymethyl chitosan did not enhance the corneal permeability nevertheless it mediated zero-order ofloxacin absorption, leading to a time-constant effective antibiotic concentration [291]. Also W,0-carboxymethyl chitosan is suitable as an excipient in ophthalmic formulations to improve the retention and the bioavailability of drugs such as pilocarpine, timolol maleate, neomycin sulfate, and ephedrine. Most of the drugs are sensitive to pH, and the composition should have an acidic pH, to enhance stability of the drug. The delivery should be made through an anion exchange resin that adjusts the pH at around 7 [292]. Chitosan solutions do not lend themselves to thermal sterilization. A chitosan suspension, however. [Pg.190]

Structural stability to May denature in high salt, Generally stable to salt, pH, and... [Pg.2]

Reagents. The measurement of enzyme activities requires rigid control of the analytical conditions, including accurate measurement of reagent and sample volumes, and careful control of temperature, pH and reagent stability. [Pg.187]


See other pages where Stability pH and is mentioned: [Pg.219]    [Pg.93]    [Pg.507]    [Pg.32]    [Pg.709]    [Pg.219]    [Pg.93]    [Pg.507]    [Pg.32]    [Pg.709]    [Pg.195]    [Pg.37]    [Pg.157]    [Pg.206]    [Pg.27]    [Pg.326]    [Pg.26]    [Pg.528]    [Pg.488]    [Pg.684]    [Pg.629]    [Pg.180]    [Pg.379]    [Pg.422]    [Pg.19]    [Pg.258]    [Pg.1072]    [Pg.366]    [Pg.134]    [Pg.351]    [Pg.1273]    [Pg.60]    [Pg.111]    [Pg.366]    [Pg.90]    [Pg.250]    [Pg.286]    [Pg.136]    [Pg.135]    [Pg.18]    [Pg.318]   
See also in sourсe #XX -- [ Pg.474 ]




SEARCH



PH stability

© 2024 chempedia.info