Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spin difference spectroscopy

By using this technique acrylamide, acrylonitrile, and methyl acrylate were grafted onto cellulose [20]. In this case, oxidative depolymerization of cellulose also occurs and could yield short-lived intermediates [21]. They [21] reported an electron spin resonance spectroscopy study of the affects of different parameters on the rates of formation and decay of free radicals in microcrystalline cellulose and in purified fibrous cotton cellulose. From the results they obtained, they suggested that ceric ions form a chelate with the cellulose molecule, possibly, through the C2 and C3 hydroxyls of the anhy-droglucose unit. Transfer of electrons from the cellulose molecule to Ce(IV) would follow, leading to its reduction... [Pg.503]

Since dipolar interaction is a distance-dependent interaction, the heteronuclear interaction between spins 1 and S can be exploited to get information about the distance between these nuclei. Heteronuclear dipolar interactions that are averaged by magic angle spiiming can be reintroduced by suitable dephasing pulses that are synchronized with the sample spinning. It is a difference spectroscopy... [Pg.143]

With ESR spectroscopy, open-shell species can be observed and characterized as long as their total spin differs from zero. With variable-temperature ESR spectroscopy, it is possible to deduce whether the observed multiplicity is a thermally populated excited state or is the ground state [69]. From such experiments, the T-S splittings of a variety of biscarbene and bisnitrenes have been determined. ESR spectroscopy is very sensitive to paramagnetic species, and because it does not see any singlet impurities or by-products, it is relatively easy to pick out the desired signals. At the same time, analysis of ESR spectra is not trivial and special simulations are required for their interpretation. [Pg.141]

The first intermediate to be generated from a conjugated system by electron transfer is the radical-cation by oxidation or the radical-anion by reduction. Spectroscopic techniques have been extensively employed to demonstrate the existance of these often short-lived intermediates. The life-times of these intermediates are longer in aprotic solvents and in the absence of nucleophiles and electrophiles. Electron spin resonance spectroscopy is useful for characterization of the free electron distribution in the radical-ion [53]. The electrochemical cell is placed within the resonance cavity of an esr spectrometer. This cell must be thin in order to decrease the loss of power due to absorption by the solvent and electrolyte. A steady state concentration of the radical-ion species is generated by application of a suitable working electrode potential so that this unpaired electron species can be characterised. The properties of radical-ions derived from different classes of conjugated substrates are discussed in appropriate chapters. [Pg.21]

Chemical constitution, steric configuration and, in some cases, details about chain conformation, aggregation, association, and supramolecular self-organization behavior of macromolecular substances can be determined using high-resolution nuclear magnetic resonance (NMR) spectroscopy. This spectroscopic technique is sensitive towards nuclei with a nuclear spin different from zero. [Pg.77]

The INEPT (Insensitive Nuclei Enhanced by Polarization Transfer) experiment [6, 7] was the first broadband pulsed experiment for polarization transfer between heteronuclei, and has been extensively used for sensitivity enhancement and for spectral editing. For spectral editing purposes in carbon-13 NMR, more recent experiments such as DEPT, SEMUT [8] and their various enhancements [9] are usually preferable, but because of its brevity and simplicity INEPT remains the method of choice for many applications in sensitivity enhancement, and as a building block in complex pulse sequences with multiple polarization transfer steps. The potential utility of INEPT in inverse mode experiments, in which polarization is transferred from a low magnetogyric ratio nucleus to protons, was recognized quite early [10]. The principal advantage of polarization transfer over methods such as heteronuclear spin echo difference spectroscopy is the scope it offers for presaturation of the unwanted proton signals, which allows clean spec-... [Pg.94]

Rate constants for the self-reactions of a number of tertiary and secondary peroxy radicals have been determined by electron spin resonance spectroscopy. The pre-exponential factors for these reactions are in the normal range for bi-molecular radical-radical reactions (109 to 1011 M"1 sec 1). Differences in the rate constants for different peroxy radicals arise primarily from differences in the activation energies of their self reactions. These activation energies can be large for some tertiary peroxy radicals (—10 kcal. per mole). The significance of these results as they relate to the mechanism of the self reactions of tertiary and secondary peroxy radicals is discussed. Rate constants for chain termination in oxidizing hydrocarbons are summarized. [Pg.268]

A. Bianco, J. Furrer, D. Limal, G. Guichard, K. Elbayed, J. Raya, M. Piotto and J. P. Briand, Multistep synthesis of 2,5-diketopiperazines on different solid supports monitored by high resolution magic angle spinning NMR spectroscopy,./. Comb. Chem., 2000, 2, 681-690. [Pg.291]

The double pulsed field gradient spin echo (DPFGSE) pulse sequence has been used to improve the measurement of proton-proton nuclear Overhauser effect (NOE) [28]. The DPFGSE NOE does not rely on difference spectroscopy and very small NOEs can be measured. This technique has been used to determine the structure of organosilicon compounds [28]. [Pg.22]

Several physical methods have been employed to ascertain the existence and nature of ICs infrared (IR) absorption spectroscopy nuclear magnetic resonance (NMR) spectroscopy,14 including JH nuclear Overhauser effect (NOE) difference spectroscopy, H 2-D rotating-frame Overhauser effect spectroscopy (2-D ROESY),15 and solid-state 13C cross-polarization/magic angle spinning (CP/MAS) spectroscopy 16 induced circular dichroism (ICD) absorption spectroscopy 17 powder and singlecrystal X-ray diffraction 18 and fast atom bombardment mass spectrometry (FAB MS). [Pg.217]

Organic adsorbates that are more hydrophobic exhibit different adsorption behavior, particularly at higher concentrations. Long-chain fatty acids adsorb to oxide surfaces in part through surface complexation, as shown by electron spin resonance spectroscopy (32). At higher concentrations at the surface, however, favorable interactions between sorbed molecules (hemimicelle formation) appear to dominate and result in greater than monolayer adsorption (40, 41). Because humic substances (like the fatty acids) are amphiphilic, both surface complexation and hydrophobic interactions may be involved in the adsorption of humic substances on oxide surfaces. [Pg.98]

The applicability of spectroscopic methods (other than NMR) for determining functionality in humic substances is reviewed. Spectroscopic methods, like all other investigational techniques, are severely limited when applied to humic substances. This is because humic substances are comprised of complicated, ill-defined mixtures of polyelectrolytic molecules, and their spectra represent the summation of the responses of many different species. In some cases only a small fraction of the total number of molecules contributes to the measured spectrum, further complicating the interpretation of spectra. The applicability and limitations of infrared spectroscopy, Raman spectroscopy, UV-visible spectroscopy, spectrofiuorimetry, and electron spin resonance spectroscopy to the study of humic substances are considered in this chapter. Infrared spectroscopy, while still very limited when applied to humic substances, is by far the most useful of the methods listed above for determining functionality in these materials. Very little information on the functionality of humic substances has been obtained by any of the other spectroscopic methods. [Pg.527]


See other pages where Spin difference spectroscopy is mentioned: [Pg.206]    [Pg.40]    [Pg.207]    [Pg.372]    [Pg.307]    [Pg.12]    [Pg.315]    [Pg.128]    [Pg.68]    [Pg.319]    [Pg.82]    [Pg.292]    [Pg.274]    [Pg.112]    [Pg.56]    [Pg.174]    [Pg.254]    [Pg.185]    [Pg.213]    [Pg.295]    [Pg.215]    [Pg.415]    [Pg.258]    [Pg.319]    [Pg.62]    [Pg.221]    [Pg.321]    [Pg.159]    [Pg.354]    [Pg.343]    [Pg.400]    [Pg.274]    [Pg.218]    [Pg.63]    [Pg.357]    [Pg.145]    [Pg.114]    [Pg.306]   
See also in sourсe #XX -- [ Pg.212 ]




SEARCH



Difference spectroscopy

Nuclear magnetic resonance spectroscopy energy difference between spin states

SPECTROSCOPY SPINNING

Spin-decoupling difference spectroscopy

© 2024 chempedia.info