Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

NOESY spectroscopy

Figure 3.1 The various time periods in a two-dimensional NMR experiment. Nuclei are allowed to approach a state of thermal equilibrium during the preparation period before the first pulse is applied. This pulse disturbs the equilibrium ptolariza-tion state established during the preparation period, and during the subsequent evolution period the nuclei may be subjected to the influence of other, neighboring spins. If the amplitudes of the nuclei are modulated by the chemical shifts of the nuclei to which they are coupled, 2D-shift-correlated spectra are obtained. On the other hand, if their amplitudes are modulated by the coupling frequencies, then 2D /-resolved spectra result. The evolution period may be followed by a mixing period A, as in Nuclear Overhauser Enhancement Spectroscopy (NOESY) or 2D exchange spectra. The mixing period is followed by the second evolution (detection) period) ij. Figure 3.1 The various time periods in a two-dimensional NMR experiment. Nuclei are allowed to approach a state of thermal equilibrium during the preparation period before the first pulse is applied. This pulse disturbs the equilibrium ptolariza-tion state established during the preparation period, and during the subsequent evolution period the nuclei may be subjected to the influence of other, neighboring spins. If the amplitudes of the nuclei are modulated by the chemical shifts of the nuclei to which they are coupled, 2D-shift-correlated spectra are obtained. On the other hand, if their amplitudes are modulated by the coupling frequencies, then 2D /-resolved spectra result. The evolution period may be followed by a mixing period A, as in Nuclear Overhauser Enhancement Spectroscopy (NOESY) or 2D exchange spectra. The mixing period is followed by the second evolution (detection) period) ij.
A large number of ID nOe experiments may have to be performed if the spatial relationships among many protons in a molecule are to be determined. In such cases, instead of employing multi pulse ID nOe experiments, we can opt for the nOe spectroscopy (NOESY) experiment. If many protons have close chemical shifts, then NOESY may be particularly advanta-... [Pg.259]

Nuclear Overhauser effect (nOe) The change in intensity in the signal of one nucleus when another nucleus lying spatially close to it is irradiated, with the two nuclei relaxing each other via the dipolar mechanism. Nuclear Overhauser effect correlation spectroscopy (NOESY) A 2D... [Pg.417]

Nuclear Overhauser enhancement spectroscopy (NOESY) experiments play a very important role in structural studies in quinolizidine derivatives. For instance, the endo-type structure of compound 28 was proven by the steric proximity of the H-3a and H-12a protons according to the NOESY cross peak, while the spatial proximity of the H-6f3 and H-8/3 protons reveals that tha A/B ring junction has a /ra t-stereochemistry. Similarly, compound 28 could be distinguished from its regioisomer 29 on the basis of the NOESY behavior of its H-13 atom <1999JST153>. [Pg.7]

The relative stereochemistry of hyperaspine 93 was determined by 2-D NMR spectroscopic and mass spectrometry (MS) methods. It has a m-fused bicyclic conformation 93a <2001TL4621>. The trans-fused one is disfavored by an axial pentyl group at C-8 and by a destabilizing dipole-dipole interaction between the N- and O-atoms, which does not exist in the alternative //.(-conformation. The geminal coupling constant of C( 1 )H2 in 93 (11.0 Hz), and that of its 6-hydroxy derivative (11.2 Hz), indicates that they exist preferentially in / //-conformations, whereas their 6-epimers adopt trans-conformations (9.3 and 8.4 Hz, respectively) <2005EJ01378>. Nuclear Overhauser enhancement spectroscopy (NOESY) studies also confirmed the stereochemistry of 93 by the marked nuclear Overhauser effect (NOE) correlation between H-3 and H-4a <20030L5063>. [Pg.94]

Assignment of the isotropically shifted signals observed for the CuNiSOD example discussed in the previous paragraph has been achieved by means of anion titrations (not discussed here) and nuclear Overhauser enhancement spectroscopy (NOESY), to be discussed next. In Figure 3.24B the CuNiSOD active site is depicted with histidine nitrogens and protons identified for the discussion of the NOESY results. The copper(II) ion is coordinated to the N ligand atoms of his46... [Pg.112]

Benzoylation of D-g/ycero-D-gw/o-heptono-1,4-lactone with an excess of benzoyl chloride and pyridine afforded the hept-2-enono-1,4-lactone as the main product (198). The di- and triunsaturated compounds were isolated in very low yield from the mother liquors (199). Higher yields of the di- and triunsaturated derivatives 153 and 154 were obtained when the /5-elimination reaction was performed with triethylamine on the previously synthesized per-O-benzoyl D-g/ycero-D-gw/o-heptono-1,4-lactone. Employing 10% triethylamine in chloroform, the lactone 153 was obtained as an E, Z dias-tereomeric mixture in 9 11 ratio as determined by H n.m.r. When 20% triethylamine was used, the furanone 154 was obtained in 59% yield (200). Its structure was assigned, on the basis of H and 13C n.m.r. spectra, as 3 -benzoyloxy - (5Z)-[(Z)-3 - benzoyloxy - 2 - propenyliden] -2(5 H)- furanone. The stereochemistry of the exocyclic double bonds was established (201) by nuclear Overhauser effect spectroscopy (NOESY). [Pg.167]

The latter, in contrast to nuclear Overhauser enhancement and exchange spectroscopy (NOESY), always feature positive NOEs (negative cross-peaks with respect to diagonal), eliminating known problems of NOEs vanishing or spin diffusion, depending on correlation time, when high field spectrometers are used for measurements of medium-size compounds. [Pg.95]

Another, yet completely different access to macroscopic binding strengths of selectands on CSPs has been described by Hellriegel et al. [65] employing suspended-state NMR spectroscopy. Thus, HR-MAS 2D transfer-nuclear Overhauser effect spectroscopy (NOESY) was utilized to distinguish solutes strongly binding to the... [Pg.47]

Two-dimensional (2D) Nuclear Overhauser Effect Spectroscopy (NOESY) has been proven to be a valuable technique which provides both structural and... [Pg.172]

The stereochemistry of the obtained acetals was confirmed by nuclear overhauser enhancement spectroscopy (NOESY) measnrement in NMR spectra. [Pg.97]

The most important two-dimensional NMR experiments for solving stmctural problems are COSY (Correlation SpectroscopY), NOESY (Nuclear Overhauser Enhancement SpectroscopY), HSC (Heteronuclear Shift Correlation) and TOCSY (Total Correlation SpectroscopY). Most modem high-held NMR spectrometers have the capability to routinely and automatically acquire COSY, NOESY, HSC and TOCSY spectra. [Pg.80]

Two-Dimensional NMR—Basically, the two-dimensional NMR techniques of nuclear Overhauser effect spectroscopy (NOESY) and correlation spectroscopy (COSY) depend on the observation that spins on different protons interact with one another. Protons that are attached to adjacent atoms can be directly spin-coupled and thus can be studied using the COSY method. This technique allows assignment of certain NMR frequencies by tracking from one atom to another. The NOESY approach is based on the observation that two protons closer than about 0.5 nm perturb one another s spins even if they are not closely coupled in the primary structure. This allows spacial geometry to be determined for certain molecules. [Pg.428]

The most conclusive evidence for the presence of duplexes la la and 2 2 came from 2-D H-NMR [nuclear Overhauser effect spectroscopy (NOESY)] and X-ray crystallography. The NOESY spectrum of lb in CDCI3 contains interstrand NOEs (Fig. 9.2a) between protons c and e, c and i, and c and j, which are consistent with an H bonded dimer. The crystal structures of la and 2 both revealed the expected dimeric stmctures held together by intermolecular H bonds (Fig. 9.2b). [Pg.210]

Aryl derivatives of thieno[3,2-f]pyridines, 36 and 37, have been the subject of two-dimensional (2-D) NMR studies. Phase-sensitive nuclear Overhauser enhancement spectroscopy (NOESY) and correlation spectroscopy (COSY) experiments confirm the nonplanar conformation of the two aromatic ring systems <1999SAA1035>. [Pg.273]

The structures of the compounds were elucidated by a combination of NMR techniques (lH-, 13C-, and 13C-DEPT NMR) and chemical transformation, enzymatic degradation, and as well as mass spectrometry, which gives information on the saccharide sequence. A more recent approach consists of an extensive use of high-resolution 2D NMR techniques, such as homonuclear and heteronuclear correlated spectroscopy (DQF-COSY, HOHAHA, HSQC, HMBC) and NOE spectroscopy (NOESY, ROESY), which now play the most important role in the structural elucidation of intact glycosides. These techniques are very sensitive and non destructive and allow easy recovery of the intact compounds for subsequent biological testing. [Pg.37]

New techniques for data analysis and improvements in instrumentation have now made it possible to carry out stmctural and conformational studies of biopolymers including proteins, polysaccharides, and nucleic acids. NMR, which may be done on noncrystalline materials in solution, provides a technique complementary to X-ray diffraction, which requires crystals for analysis. One-dimensional NMR, as described to this point, can offer structural data for smaller molecules. But proteins and other biopolymers with large numbers of protons will yield a very crowded spectrum with many overlapping lines. In multidimensional NMR (2-D, 3-D, 4-D), peaks are spread out through two or more axes to improve resolution. The techniques of correlation spectroscopy (COSY), nuclear Overhausser effect spectroscopy (NOESY), and transverse relaxation-optimized spectroscopy (TROSY) depend on the observation that nonequivalent protons interact with each other. By using multiple-pulse techniques, it is possible to perturb one nucleus and observe the effect on the spin states of other nuclei. The availability of powerful computers and Fourier transform (FT) calculations makes it possible to elucidate structures of proteins up to 40,000 daltons in molecular mass and there is future promise for studies on proteins over 100,000... [Pg.165]

Record the 2-D H- H nuclear Overhaiiser enhancement spectroscopy (NOESY) spectrum (Braun et al., 1998, pp. 405-408). [Pg.823]

Couplings don t necessarily have to occur through bonding. Protons that are close to each other in space may be observed as cross-peaks in a nuclear Overhaiiser enhancement spectroscopy (NOESY) spectrum. Thus, the more sensitive NOESY experiment proves to be an alternative technique to HMBC for determination of some linkages within an anthocyanin. When a sugar is attached to the aglycone 3-po-... [Pg.832]

The spirobenzoxazepine 28 was studied by 2-D and nuclear Overhauser enhancement Spectroscopy (NOESY) NMR and X-ray crystallography, and in both cases the same chair conformation, 28, was formed (See Figure 5). The authors conclude that this compound 28 is a semirigid scaffold, able to present various substituents without undergoing hydrophobic collapse, and 28 behaves structurally as a privileged structure <2004TL1051>. [Pg.259]

Correlation spectroscopy (COSY), nuclear overhauser enhancement spectroscopy (NOESY), I-D NOE, and HPLC techniques were utilized in the identification of three trapped products formed from coupling of the generated C4-centered radical of artemisinin with manganese(n) tetraphenylporphorin <2001AGE1954>. [Pg.302]

H and 13C NMR techniques have widely been used to determine the configuration of new dioxepins and dithiepins and to elucidate the constitution and conformation of new naturally occurring substances. For example, the configuration of oximes 14 was determined by H and 13C correlated spectra, correlation spectroscopy (COSY), nuclear Overhauser enhancement spectroscopy (NOESY), heteronuclear correlation (HETCOR) spectroscopy, and hetero-nuclear multiple bond correlation (E1MBC) spectroscopy <1998CCA557>. [Pg.324]

A novel cysteine derivative, spongiacysteine, was isolated recently from marine sponge. It was converted to lactone 4 by reaction with 2,4,6-trichlorobenzoyl chloride, 4-dimethylaminopyridine (DMAP), and triethylamine. Selected nuclear Overhauser enhancement spectroscopy (NOESY) correlation and coupling constants are given <2004CL1262>. [Pg.369]

Notably, two isomeric products can be generated. The usual infrared (IR) and mass spectra as well as H and 13C NMR chemical shifts could not define which isomer was formed. The authors used different NMR techniques, such as 2-D heteronuclear multiple bond correlation (HMBC) experiments and phase-sensitive nuclear overhauser enhancement spectroscopy (NOESY) measurements to elucidate the product s structure. [Pg.408]

Nuclear Overhauser effect spectroscopy NOESY Interactions through space/chemical exchange... [Pg.597]


See other pages where NOESY spectroscopy is mentioned: [Pg.257]    [Pg.152]    [Pg.983]    [Pg.401]    [Pg.110]    [Pg.365]    [Pg.53]    [Pg.740]    [Pg.112]    [Pg.115]    [Pg.316]    [Pg.93]    [Pg.704]    [Pg.41]    [Pg.210]    [Pg.547]    [Pg.1236]    [Pg.458]    [Pg.122]   
See also in sourсe #XX -- [ Pg.111 ]




SEARCH



NMR spectroscopy NOESY spectra

NOE Spectroscopy (NOESY)

NOESY

NOESY enhancement spectroscopy

NOESY experiments exchange spectroscopy

Nuclear Overhauser enhancement spectroscopy NOESY)

Nuclear Overhauser spectroscopy (NOESY

Nuclear magnetic resonance spectroscopy NOESY

Nuclear overhauser effect spectroscopy NOESY)

Overhauser effect spectroscopy NOESY

Proteins, NOESY spectroscopy

Three-dimensional NOESY spectroscopy

© 2024 chempedia.info