Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heteronuclear shift correlation

Heteronucleus-detected shift correlation experiments have now been largely supplanted by far more sensitive proton- or inverse -detected methods. The heteronu-cleus-detected experiments are now largely reserved, in laboratories with modem NMR spectrometers, for those occasions when very high digital resolution is needed in the carbon frequency domain because of high spectral congestion [109, 110]. The remainder of this section will focus on the now widely utihzed proton-detected heteronuclear shift correlation methods. [Pg.234]


CH COSY Correlation via one-bond CH coupling, also referred to as HETCOR (heteronuclear shift correlation), provides carbon-13- and proton shifts of nuclei in C//bonds as cross signals in a 5c versus 8h diagram, assigns all C//bonds of the sample... [Pg.266]

Some of the most important 2D experiments involve chemical shift correlations between either the same type of nuclei (e.g., H/ H homonu-clear shift correlation) or between nuclei of different types (e.g., H/ C heteronuclear shift correlation). Such experiments depend on the modulation of the nucleus under observation by the chemical shift frequency of other nuclei. Thus, if H nuclei are being observed and they are being modulated by the chemical shifts of other H nuclei in the molecule, then homonuclear shift correlation spectra are obtained. In contrast, if C nuclei are being modulated by H chemical shift frequencies, then heteronuclear shift correlation spectra result. One way to accomplish such modulation is by transfer of polarization from one nucleus to the other nucleus. Thus the magnitude and sign of the polarization of one nucleus are modulated at its chemical shift frequency, and its polarization transferred to another nucleus, before being recorded in the form of a 2D spectrum. Such polarization between nuclei can be accomplished by the simultaneous appli-... [Pg.104]

In homonuclear-shift-correlated experiments, the Ft domain corresponds to the nucleus under observation in heteronuclear-shift-correlated experiments. Ft relates to the unobserved or decoupled nucleus. It is therefore necessary to set the spectral width SW, after considering the ID spectrum of the nucleus corresponding to the Ft domain. In 2D /-resolved spectra, the value of SW depends on the magnitude of the coupling constants and the type of experiment. In both homonuclear and heteronuclear experiments, the size of the largest multiplet structure, in hertz, determines... [Pg.158]

SWi, which in turn is related to the homonuclear or heteronuclear coupling constants. In homonuclear 2D spectra, the transmitter offset frequency is kept at the center of (i.e., at = 0) and F domains. In heteronuclear-shift-correlated spectra, the decoupler offset frequency is kept at the center (Fi = 0) of thei i domain, with the domain corresponding to the invisible or decoupled nucleus. [Pg.159]

Heteronuclear-shift-correlation spectra, which are usually presented in the absolute-value mode, normally contain long dispersive tails that are suppressed by applying a Gaussian or sine-bell function in the F domain. In the El dimension, the choice of a weighting function is less critical. If a better signal-to-noise ratio is wanted, then an exponential broadening multiplication may be employed. If better resolution is needed, then a resolution-enhancing function can be used. [Pg.170]

The matrix obtained after the F Fourier transformation and rearrangement of the data set contains a number of spectra. If we look down the columns of these spectra parallel to h, we can see the variation of signal intensities with different evolution periods. Subdivision of the data matrix parallel to gives columns of data containing both the real and the imaginary parts of each spectrum. An equal number of zeros is now added and the data sets subjected to Fourier transformation along I,. This Fourier transformation may be either a Redfield transform, if the h data are acquired alternately (as on the Bruker instruments), or a complex Fourier transform, if the <2 data are collected as simultaneous A and B quadrature pairs (as on the Varian instruments). Window multiplication for may be with the same function as that employed for (e.g., in COSY), or it may be with a different function (e.g., in 2D /-resolved or heteronuclear-shift-correlation experiments). [Pg.171]

In homonudear shift-correlation experiments like COSY we were concerned with the correlation of chemical shifts between nuclei of the same nuclear species, e.g., H with H. In heteronuclear shift-correlation experiments, however, the chemical shifts of nuclei belonging to different nuclear species are determined (e.g., H with C). These may be one-bond chemical shift correlations, e.g., between directly bound H and C nuclei, or they may be long-range chemical shift correlations, in which the interactions... [Pg.254]

Figure 5.40 (A) Pulse sequence for the 2D heteronuclear shift-correlation experiment. (B) Effect of the pulse sequence in (A) on H magnetization vectors of CH. Figure 5.40 (A) Pulse sequence for the 2D heteronuclear shift-correlation experiment. (B) Effect of the pulse sequence in (A) on H magnetization vectors of CH.
Figure 5.41 Heteronuclear shift correlation (HETCOR) spectrum of an isoprenyl-coumarin. Figure 5.41 Heteronuclear shift correlation (HETCOR) spectrum of an isoprenyl-coumarin.
The one-bond HETCOR spectrum and C-NMR data of podophyllo-toxin are shown. The one-bond heteronuclear shift correlations can readily be made from the HETCOR spectrum by locating the posidons of the cross-peaks and the corresponding 5h and 8c chemical shift values. The H-NMR chemical shifts are labeled on the structure. Assign the C-NMR resonances to the various protonated carbons based on the heteronuclear correlations in the HETCOR spectrum. [Pg.288]

The HMBC spectrum of vasicinone along with the H-NMR assignments are shown. Determine the H/ C long-range heteronuclear shift correlations based on the HMBC experiment, and explain how HMBC correlations are useful in chemical shift assignments of nonprotonated quaternary carbons. [Pg.295]

The HMQC spectrum of podophyllotoxin shows heteronuclear crosspeaks for all 13 protonated carbons. Each cross-peak represents a one-bond correlation between the C nucleus and the attached proton. It also allows us to identify the pairs of geminally coupled protons, since both protons display cross-peaks with the same carbon. For instance, peaks A and B represent the one-bond correlations between protons at 8 4.10 and 4.50 with the carbon at 8 71.0 and thus represent a methylene group (C-15). Cross-peak D is due to the heteronuclear correlation between the C-4 proton at 8 4.70 and the carbon at 8 72.0, assignable to the oxygen-bearing benzylic C-4. Heteronuclear shift correlations between the aromatic protons and carbons are easily distinguishable as cross-peaks J-L, while I represents C/H interactions between the methylenedioxy protons (8 5.90) and the carbon at 8 101.5. The C-NMR and H-NMR chemical shift assignments based on the HMQC cross-peaks are summarized on the structure. [Pg.325]

The HMBC spectrum of vasicinone displays long-range heteronuclear shift correlations between the various H/ C nuclei. These correlations are very helpful to determine the C-NMR chemical shifts of quaternary carbons and allow the interlinking of the different substructures obtained. [Pg.330]

The SELINCOR experiment is a selective ID inverse heteronuclear shift-correlation experiment i.e., ID H,C-COSYinverse experiment) (Berger, 1989). The last C pulse of the HMQC experiment is in this case substituted by a selective 90° Gaussian pulse. Thus the soft pulse is used for coherence transfer and not for excitation at the beginning of the sequence, as is usual for other pulse sequences. The BIRD pulse and the A-i delay are optimized to suppress protons bound to nuclei As is adjusted to correspond to the direct H,C couplings. The soft pulse at the end of the pulse sequence (Fig. 7.8) serves to transfer the heteronuclear double-quantum coherence into the antiphase magnetization of the protons attached to the selectively excited C nuclei. [Pg.371]

Inverse experiments Heteronuclear shift-correlation experiments in which magnetization of the less sensitive heteronucleus (e.g., C) is detected through the more sensitive magnetization (e.g., H). [Pg.415]

Besse P, B Combourieu, G Boyse, M Sancelme, H de Wever, A-M Delort (2001) Long-range H- N heteronuclear shift correlation at natural abundance a tool to study benzothiazole biodegradation by two Rhodococcus strains. Appl Environ Microbiol 67 1412-1417. [Pg.568]

Long-Range Heteronuclear Shift Correlation HMBC... [Pg.215]

LONG-RANGE HETERONUCLEAR SHIFT CORRELATION HMBC AND RELATED EXPERIMENTS... [Pg.218]

NMR probes are designed with the X-coil closest to the sample for improved sensitivity of rare nuclei. Inverse detection NMR probes have the proton coil inside the X-coil to afford better proton sensitivity, with the X-coil largely relegated to the task of broadband X-nucleus decoupling. These proton optimized probes are often used for heteronuclear shift correlation experiments. [Pg.275]


See other pages where Heteronuclear shift correlation is mentioned: [Pg.265]    [Pg.143]    [Pg.178]    [Pg.235]    [Pg.237]    [Pg.243]    [Pg.245]    [Pg.253]    [Pg.254]    [Pg.257]    [Pg.259]    [Pg.271]    [Pg.272]    [Pg.273]    [Pg.331]    [Pg.216]    [Pg.218]    [Pg.218]    [Pg.219]    [Pg.288]    [Pg.351]   


SEARCH



Heteronuclear correlations

Shift correlation

© 2024 chempedia.info