Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopy copolymer

For both copolymers and stereoregular polymers, experimental methods for characterizing the products often involve spectroscopy. We shall see that nuclear magnetic resonance (NMR) spectra are particularly well suited for the study of tacticity. This method is also used for the analysis of copolymers. [Pg.424]

Most of the experimental information concerning copolymer microstructure has been obtained by physical methods based on modern instrumental methods. Techniques such as ultraviolet (UV), visible, and infrared (IR) spectroscopy, NMR spectroscopy, and mass spectroscopy have all been used to good advantage in this type of research. Advances in instrumentation and computer interfacing combine to make these physical methods particularly suitable to answer the question we pose With what frequency do particular sequences of repeat units occur in a copolymer. [Pg.460]

An elegant example of a system investigated by UV-visible spectroscopy is the copolymer of styrene (molecule 1) and 1-chloro-l, 3-butadiene (molecule 2). These molecules quantitatively degrade with the loss of HCl upon heating in base solution. This restores 1,3-unsaturation to the butadiene repeat unit ... [Pg.462]

Nuclear magnetic resonance (NMR) spectroscopy is another physical technique which is especially useful for microstructure studies. Because of the sensitivity of this technique to an atom s environment in a molecule, NMR is useful for a variety of microstructural investigations We shall consider the application to copolymers now and to questions of stereoregularity in Sec. 7.11... [Pg.462]

The use of NMR spectroscopy to characterize copolymer microstructure takes advantage of this last ability to discern environmental effects which extend over the length of several repeat units. This capability is extremely valuable in analyzing the stereoregularity of a polymer, and we shall have more to say about it in that context in Sec. 7.11. [Pg.464]

The mole fractions of various dyads in the vinylidine chloride (Mi)-isobutylem (Mj) system were determinedf by NMR spectroscopy. A selection of the value obtained are listed below, as well as the compositions of the feedstocks fron which the copolymers were prepared ... [Pg.466]

It is not the purpose of this book to discuss in detail the contributions of NMR spectroscopy to the determination of molecular structure. This is a specialized field in itself and a great deal has been written on the subject. In this section we shall consider only the application of NMR to the elucidation of stereoregularity in polymers. Numerous other applications of this powerful technique have also been made in polymer chemistry, including the study of positional and geometrical isomerism (Sec. 1.6), copolymers (Sec. 7.7), and helix-coil transitions (Sec. 1.11). We shall also make no attempt to compare the NMR spectra of various different polymers instead, we shall examine only the NMR spectra of different poly (methyl methacrylate) preparations to illustrate the capabilities of the method, using the first system that was investigated by this technique as the example. [Pg.482]

Alternation is usually above 90%. Nearly perfect alternation of isomeric units in a ca 1 1 monomer ratio has been confirmed by infrared spectroscopy. Bands at 733 and 721 cm have an intensity proportional to the concentration of (CH2) groups (n = 4 and <6, respectively) present in a copolymer containing 46 mol % tetrafluoroethylene intensity decreases with increasing concentration of fluorinated monomer. [Pg.366]

The excellent low temperature properties of FZ have been iadicated ia Table 1. Modulus curves were obtained usiag dynamic mechanical spectroscopy to compare several elastomer types at a constant 75 durometer hardness. These curves iadicate the low temperature flexibiUty of FZ is similar to fluorosihcone and ia great contrast to that of a fluorocarbon elastomer (vinyUdene fluoride copolymer) (Fig. 3) (15). [Pg.527]

Carbazole, 2-hydroxy-reactions with citral, 4, 235 Carbazole, 2-hydroxy-9-methyl-synthesis, 4, 294 Carbazole, N-hydroxymethyl-as metabolite of carbazole, 1, 230 Carbazole, N-isopropyl-PE spectroscopy, 4, 190 Carbazole, A7-methyl- N NMR, 4, 175 X-ray spectroscopy, 4, 163 Carbazole, 1-nitro-synthesis, 4, 282 Carbazole, tetrahydro-dehydrogenation, 4, 282, 312 synthesis, 4, 107, 337, 353 Carbazole, 1,2,3,4-tetrahydro-reduction, 4, 255, 256 synthesis, 4, 312, 325, 352 Carbazole, 1,2,3,4-tetrahydro-1 -oxo-synthesis, 4, 337 Carbazole, 9-trifluoroacetyl-synthesis, 4, 218 Carbazole, vinyl-polymers, 1, 275, 301 Carbazole, 9-vinyl-copolymer... [Pg.574]

The main experimental techniques used to study the failure processes at the scale of a chain have involved the use of deuterated polymers, particularly copolymers, at the interface and the measurement of the amounts of the deuterated copolymers at each of the fracture surfaces. The presence and quantity of the deuterated copolymer has typically been measured using forward recoil ion scattering (FRES) or secondary ion mass spectroscopy (SIMS). The technique was originally used in a study of the effects of placing polystyrene-polymethyl methacrylate (PS-PMMA) block copolymers of total molecular weight of 200,000 Da at an interface between polyphenylene ether (PPE or PPO) and PMMA copolymers [1]. The PS block is miscible in the PPE. The use of copolymers where just the PS block was deuterated and copolymers where just the PMMA block was deuterated showed that, when the interface was fractured, the copolymer molecules all broke close to their junction points The basic idea of this technique is shown in Fig, I. [Pg.223]

It was recently found that j3-PCPY can also be used as a radical initiator to obtain an alternate copolymer of MMA with styrene [35], which was only possible in the presence of Lewis acids [36,37] in the past. The kinetics of the system has been formulated as Rp a[/3-PCPY] a[MMA] (l/a[Styrene] The values of kp /k, and AE were evaluated as 1.43 x 10 L mol -s and 87 kJ/ mol, respectively, for the system. NMR spectroscopy was used to determine the structure composition and stereochemistry of copolymers. Radical copolymerization of AN with styrene [38] by using /3-PCPY as the initiator at 55-65°C also resulted in an alternate copolymer. Rp is a direct function of /3-PCPY and AN, and is inversely related to styrene. [Pg.377]

The presence of a critical St content in ASt-x can also be seen in fluorescence spectra [29], This copolymer in aqueous solution shows an excimer emission peaking at 325 nra. As shown in Fig. 8, the intensity of the excimer emission increases, while the monomer emission decreases, with increasing St content. Eventually the excimer dominates the monomer emission at an St content of 72 mol%. The excimer emission becomes apparent at an St content of about 50 mol%, which agrees with the critical St content estimated by viscometry and NMR spectroscopy. The existence of the critical St content suggests the hydro-phobic self-aggregation to be a cooperative process. [Pg.67]

Tosi, C. and Ciampelli, F. Applications of Infrared Spectroscopy to Ethylene-Propylene Copolymers. Vol. 12, pp. 87-130. [Pg.186]

NMR spectroscopy has made possible the characterization of copolymers in terms of their monomer sequence distribution. The area has been reviewed by Randall,100 Bovey,139 Tonelli,101 Hatada140 and others. Information on monomer sequence distribution is substantially more powerful than simple composition data with respect to model discrimination,25,49 Although many authors have used the distribution of triad fractions to confirm the adequacy or otherwise of various models, only a few25 58,141 have used dyad or triad fractions to calculate reactivity ratios directly. [Pg.362]

Using proton NMR of solutions, the composition of polymers can be analyzed.47 Carbon-13 NMR spectroscopy is a useful tool for studying the sequence length of segments in copolymers and thereby determining the blockiness of the copolymer. With solid-state NMR, the mobility of chain segments can be studied and the crystallinity determined. [Pg.162]

Alcohol sulfates and alcohol ether sulfates separated by HPLC on a styrene-divinylbenzene copolymer column with 4 1 (v/v) methanol and 0.05 M ammonium acetate aqueous solution as the mobile phase were analyzed by simultaneous inductively coupled argon plasma vacuum emission spectroscopy (IPC), monitoring the 180.7-nm sulfur line as a sulfur-specific detector [294]. This method was applied to the analysis of these surfactants in untreated wastewaters. [Pg.284]

Thus, NMR spectroscopy is useful for characterizing the nature of the cross-sequences in random copolymers. [Pg.9]

Synthesis of siloxane-urethane copolymers from various hydroxyalkyl-terminated PDMS oligomers and aliphatic diisocyanates, such as tetramethylene- and hexame-thylene diisocyanate and HMDI was reported 333,334). Reactions were conducted either in chloroform or 1,4-dioxane and usually low molecular weight, oily products were obtained. No data were available on the molecular weights or the thermal and mechanical properties of the copolymers obtained. These products were later cross-linked by a peroxide. Resulting materials were characterized by IR spectroscopy and water contact angle measurements for possible use as contact lenses. [Pg.41]


See other pages where Spectroscopy copolymer is mentioned: [Pg.37]    [Pg.646]    [Pg.246]    [Pg.37]    [Pg.646]    [Pg.246]    [Pg.149]    [Pg.149]    [Pg.221]    [Pg.354]    [Pg.354]    [Pg.260]    [Pg.540]    [Pg.553]    [Pg.671]    [Pg.218]    [Pg.483]    [Pg.682]    [Pg.296]    [Pg.66]    [Pg.161]    [Pg.66]    [Pg.358]    [Pg.374]    [Pg.591]    [Pg.599]    [Pg.41]    [Pg.51]    [Pg.51]   
See also in sourсe #XX -- [ Pg.264 ]




SEARCH



Block copolymers nuclear magnetic resonance spectroscopy

Copolymers Fourier transform infrared spectroscopy

Copolymers Raman spectroscopy, composition

Copolymers infrared spectroscopy, composition

Copolymers mass spectroscopy

Dynamic mechanical spectroscopy block copolymers

Fourier-transform infrared spectroscopy block copolymers

Infrared spectroscopy copolymers

Infrared spectroscopy ethylene-propylene copolymer

Infrared spectroscopy, copolymers composition determination

NMR spectroscopy corresponding copolymer

Nuclear magnetic resonance spectroscopy Ethylene - propylene copolymers

Nuclear magnetic resonance spectroscopy copolymer structure

Raman spectroscopy, copolymers

Raman spectroscopy, copolymers composition determination

Spectroscopy anhydride copolymer

Spectroscopy, block copolymers

Vibrational spectroscopy copolymer composition

© 2024 chempedia.info