Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spectroscopies involving

The scattering techniques, dynamic light scattering or photon correlation spectroscopy involve measurement of the fluctuations in light intensity due to density fluctuations in the sample, in this case from the capillary wave motion. The light scattered from thermal capillary waves contains two observables. The Doppler-shifted peak propagates at a rate such that its frequency follows Eq. IV-28 and... [Pg.124]

The relationship between tire theoretical quantity i-j and the experimental parameter e of absorption spectroscopy involves, not the value of e at any one wavelengdi, but its integral over the absorption band. The relationship is... [Pg.1126]

Photoelectron spectroscopy involves the ejection of electrons from atoms or molecules following bombardment by monochromatic photons. The ejected electrons are called photoelectrons and were mentioned, in the context of the photoelectric effect, in Section 1.2. The effect was observed originally on surfaces of easily ionizable metals, such as the alkali metals. Bombardment of the surface with photons of tunable frequency does not produce any photoelectrons until the threshold frequency is reached (see Figure 1.2). At this frequency, v, the photon energy is just sufficient to overcome the work function

[Pg.289]

An elegant application of Se NMR spectroscopy, in conjunction with N NMR spectroscopy, involves the detection of the thermally unstable eight-membered rings (RSeN)4 (3.13) from the reactions of a mixture of seleninic anhydrides (RSeO)20 (R=Ph, Pr) and N-enriched... [Pg.36]

Atomic absorption spectroscopy involves atomising the specimen, often by spraying a solution of the sample into a flame, and then studying the absorption of radiation from an electric lamp producing the spectrum of the element to be determined. [Pg.7]

The first step in determination of a structure by NMR spectroscopy involves assignment of individual proton resonances. Development of high-field spectrometers and the use of a second dimension (2D-NMR) along with isotopic substitution (11) and sophisticated pulse sequences (12) make it possible to almost completely assign the proton spectrum of proteins of about 15 kD molecular weight (13—17). Some 2D-pulse sequences commonly used in the study of macromolecules are shown in Figure 1. [Pg.291]

A further technique exists for the determination of triplet energy levels. This technique, called electron impact spectroscopy, involves the use of inelastic scattering of low-energy electrons by collision with molecules. The inelastic collisions of the electrons with the molecules result in transfer of the electron energy to the molecule and the consequent excitation of the latter. Unlike electronic excitation by photons, excitation by electron impact is subject to no spin selection rule. Thus transitions that are spin and/or orbitally forbidden for photon excitation are totally allowed for electron impact excitation. [Pg.117]

Like Raman scattering, fluorescence spectroscopy involves a two-photon process so that it can be used to determine the second and the fourth rank order parameters. In this technique, a chromophore, either covalently linked to the polymer chain or a probe incorporated at small concentrations, absorbs incident light and emits fluorescence. If the incident electric field is linearly polarized in the e direction and the fluorescent light is collected through an analyzer in the es direction, the fluorescence intensity is given by... [Pg.322]

Double-resonance spectroscopy involves the use of two different sources of radiation. In the context of EPR, these usually are a microwave and a radiowave or (less common) a microwave and another microwave. The two combinations were originally called ENDOR (electron nuclear double resonance) and ELDOR (electron electron double resonance), but the development of many variations on this theme has led to a wide spectrum of derived techniques and associated acronyms, such as ESEEM (electron spin echo envelope modulation), which is a pulsed variant of ENDOR, or DEER (double electron electron spin resonance), which is a pulsed variant of ELDOR. The basic principle involves the saturation (partially or wholly) of an EPR absorption and the subsequent transfer of spin energy to a different absorption by means of the second radiation, leading to the detection of the difference signal. The requirement of saturability implies operation at close to liquid helium, or even lower, temperatures, which, combined with long experimentation times, produces a... [Pg.226]

Extensive discussion on the ionization potentials of 1,2,5-thiadiazole and its derivatives can be found in CHEC(1984) and CHEC-II(1996) <1984CHEC(6)513, 1996CHEC-II(4)355>. Hel photoelectron spectroscopy, inner-shell electron energy loss spectroscopy involving the S2p, S2s, Cls and Nls edges, and Sis synchrotron radiation photoabsorption spectroscopy were used to probe the occupied and unoccupied valence levels of benzothiadiazole 2 <1991MI165>. [Pg.523]

The EEM fluorescence spectroscopy involved scanning and recording of 23 individual emission spectra (220-510 nm) at sequential increments of 10 nm of excitation wavelength between 260 and 490 nm. The spectra were recorded at a scan speed of 1000 nm/min using excitation and emission slit bandwidths of 10 nm. Analyses were performed at a constant laboratory temperature of 22 3 °C, and blank water scans were run between every 10-20 analyses using a sealed distilled water cell. [Pg.306]

Indeed, the precise location of hydrogen atoms by means of microwave spectroscopy involves the study of a complete set of isotopic (deuterated) derivatives, which is often costly and time-consuming. An alternative method, based on neutron diffraction measurements, is difficult to carry out for many obvious reasons. [Pg.13]

If one is interested in spectroscopy involving only the ground Born Oppenheimer surface of the liquid (which would correspond to IR and far-IR spectra), the simplest approximation involves replacing the quantum TCF by its classical counterpart. Thus pp becomes a classical variable, the trace becomes a phase-space integral, and the density operator becomes the phase-space distribution function. For light frequency co with ho > kT, this classical approximation will lead to substantial errors, and so it is important to multiply the result by a quantum correction factor the usual choice for this application is the harmonic quantum correction factor [79 84]. Thus we have... [Pg.63]

By means of femtochemistry, investigation of elementary reactions on a timescale of femtoseconds (10-15s) is possible. The method employs a combination of pulsed-laser and molecular-beam technologies. Investigation of a unimolecular reaction by femtosecond spectroscopy involves two ultra-fast laser pulses being passed into a beam of reactant molecules. [Pg.193]

Mossbauer spectroscopy involves the measurement of minute frequency shifts in the resonant gamma-ray absorption cross-section of a target nucleus (most commonly Fe occasionally Sn, Au, and a few others) embedded in a solid material. Because Mossbauer spectroscopy directly probes the chemical properties of the target nucleus, it is ideally suited to studies of complex materials and Fe-poor solid solutions. Mossbauer studies are commonly used to infer properties like oxidation states and coordination number at the site occupied by the target atom (Flawthome 1988). Mossbauer-based fractionation models are based on an extension of Equations (4) and (5) (Bigeleisen and Mayer 1947), which relate a to either sums of squares of vibrational frequencies or a sum of force constants. In the Polyakov (1997)... [Pg.90]

Rule First of all, never make the mistake of calling it mass spectroscopy. Spectroscopy involves the absorption of electromagnetic radiation, and mass spectrometry is different, as we will see. The mass spectrometrists sometimes get upset if you confuse this issue. [21]... [Pg.2]

Ellipsometry Thickness and topography of oxide layers Reflectance spectroscopy Involving polarised light... [Pg.168]

Photoelectron spectroscopy involves detection and analysis of the photoelectrons produced by interaction of radiation with a solid. This radiation may be X-rays (for X-ray photoelectron spectroscopy, XPS or ESCA) or ultraviolet radiation (UPS) it causes the removal of a single core or valence electron, respectively. The kinetic energy, Ek, of these electrons is given by the following equation ... [Pg.169]

Luminescence spectroscopy involves three related optical methods fluorescence, phosphorescence, and chemiluminescene. These methods utilize excited molecules of an analyte to give a species whose emission spectrum can provide information about the molecule. In fluorescence, atoms can be excited to a higher energy level by the absorption of photons of radiation. Some features of luminescence methods are increased sensitivity (in the order of three magnitudes smaller than absorption spectroscopy), larger linear range of concentration, and method selectivity (Parsons 1982). [Pg.155]


See other pages where Spectroscopies involving is mentioned: [Pg.1969]    [Pg.373]    [Pg.393]    [Pg.433]    [Pg.382]    [Pg.147]    [Pg.1]    [Pg.575]    [Pg.63]    [Pg.305]    [Pg.50]    [Pg.50]    [Pg.298]    [Pg.292]    [Pg.343]    [Pg.86]    [Pg.71]    [Pg.273]    [Pg.391]    [Pg.395]    [Pg.33]    [Pg.198]    [Pg.132]    [Pg.179]    [Pg.38]    [Pg.104]    [Pg.108]    [Pg.99]   
See also in sourсe #XX -- [ Pg.423 ]




SEARCH



Physical chemistry involving light spectroscopy and photochemistry

Thermal excitation, spectroscopies involving

Thermal, spectroscopies involving

© 2024 chempedia.info