Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Specifications detector pressure sensitivity

Certain SEC applications solicit specific experimental conditions. The most common reason is the limited sample solubility. In this case, special solvents or increased temperature are inavoid-able. A possibility to improve sample solubility and quality of eluent offer multicomponent solvents (Sections 16.2.2 and 16.8.2). The selectivity of polymer separation by SEC drops with the deteriorating eluent quality due to decreasing differences in the hydrodynamic volume of macromolecules with different molar masses. The system peaks appear on the chromatograms obtained with mixed eluents due to preferential solvation of sample molecules (Sections 16.3.2 and 16.3.3). The multicomponent eluents may create system peaks also as a result of the (preferential) sorption of their components within column packing [144,145]. The extent of preferential sorption is often sensitive toward pressure variations [69,70,146-149]. Even if the specific detectors are used, which do not see the eluent composition changes, it is necessary to discriminate the bulk sample solvent from the SEC separated macromolecules otherwise the determined molecular characteristics can be affected. This is especially important if the analyzed polymer contains a tail of fractions possessing lower molar masses (Sections 16.4.4 and 16.4.5). [Pg.474]

The pressure sensitivity of a detector is one factor that determines the long term noise. It is the change in detector output per unit change in sensor-cell pressure. This specification is not critical for chiral chromatography as the katharometer (the detector most sensitive to pressure changes) is rarely used. [Pg.94]

The pressure sensitivity defined as that pressure equivalent to the noise level is very important as it determines both the limits of pressure and flow variation that can be tolerated from the pump. The specification of the maximum working pressure is also important where multidimensional column systems are required to be employed since there is a significant flow impedance subsequent to the detector cell,... [Pg.47]

A very elegant analytical technique for the lead alkyls is that of Ballinger and Whittemore. They combined pressure programming with use of an atomic absorption spectrophotometer as a specific detector to produce a rapid, precise, and sensitive analytical technique. A 10 foot column packed with 20% 1,2,3,-tris-(cyanoethoxy)-propane on 60/80 mesh Chromosorb P coated with 1% potassium hydroxide was operated at 85°C. Flow rates were programmed from 10—00 ml/min., (Figure 159). Analysis of the five lead alkyls was completed in less than one and a half minutes. The amount of lead was determined by the absorption of the lead 2833 S. emission line. The method could detect as little as 20 nanograms of lead as lead alkyl. The application of atomic absorption spectroscopy to the determination of lead alkyls separated chromatography has also been discussed by... [Pg.407]

In the study of atmospheric temperatures and composition one is often interested in the emission from a particular atmospheric constituent. For the analysis of the vertical temperature profile on Earth, Venus, and Mars, thermal emission from the CO2 molecule can be used. If the same gas is contained in the absorption cell, the radiation of interest is being filtered out. How does one measure the radiation that has just been removed from the beam This can be accomplished in several ways. For example, consider an absorption cell with two windows on opposing ends exposed to a beam of radiation. Wavenumbers outside the gas absorption band and in the transparent gaps between lines will penetrate the cell without a noticeable effect. Radiation within the width of strong lines will be absorbed and will cause a temperature rise in the gas. The corresponding pressure increase may be registered by a sensitive pressure transducer. The resulting infrared detector is sensitive only to radiation specifically tuned to the gas in the cell. Such detectors have been produced (the Patterson-Moos cell), but have, as far as we know, never been applied to planetary work. [Pg.193]

The use of separation techniques, such as gel permeation and high pressure Hquid chromatography interfaced with sensitive, silicon-specific aas or ICP detectors, has been particularly advantageous for the analysis of siUcones in environmental extracts (469,483—486). Supercritical fluid chromatography coupled with various detection devices is effective for the separation of siUcone oligomers that have molecular weights less than 3000 Da. Time-of-flight secondary ion mass spectrometry (TOF-sims) is appHcable up to 10,000 Da (487). [Pg.60]

Two types of ultrasonic systems are available that can be used for predictive maintenance structural and airborne. Both provide fast, accurate diagnosis of abnormal operation and leaks. Airborne ultrasonic detectors can be used in either a scanning or contact mode. As scanners, they are most often used to detect gas pressure leaks. Because these instruments are sensitive only to ultrasound, they are not limited to specific gases as are most other gas leak detectors. In addition, they are often used to locate various forms of vacuum leaks. [Pg.804]

With the development of sophisticated ionization techniques including electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), HPLC-MS techniques have been successfully applied to the online analysis of ginsenosides in extracts and biological fluids (Fuzzati, 2004). In terms of sensitivity and specificity, an MS detector is better than UV or ELSD. Among the various MS methods, the HPLC-MS-MS (or just LC-MS-MS) technique is to date the most sensitive method for detection and quantification of ginsenosides. [Pg.57]

RI detectors measure this deflection, and are sensitive to all analytes that have a different R1 than the mobile phase. There are two major limitations First, Rl detectors are very sensitive to changes in the temperature, pressure, and flow rate of the mobile phase, and so these measurement conditions must be kept stable in order to obtain low background levels. Second, Rl detectors are incompatible with chromatographic separations using gradient elution. Furthermore, because Rl detectors are nonselective, they must be used in conjunction with other detection methods if specificity is required. Nevertheless, they have found wide application in isocratic chromatographic analysis for analytes that do not have absorptive, fluorescent, or ionic properties, such as polymers and carbohydrates. [Pg.215]

The partial pressure is calculated from the ion flow measured for a certain fragment by multiplication w/ith two factors. The first factor w/ill depend only on the nitrogen sensitivity of the detector and thus is a constant for the device. The second w/ill depend only on the specific ion properties. [Pg.106]

The refractive index is very sensitive to temperature and pressure. To overcome this drawback, the two cells are close. Any change in temperature affects both cells. The main specifications are refractive index range, flow rate range, and temperature settings. Gradients cannot be used with RI detectors, but some devices to do so have been described. [Pg.43]

The source operating pressure is the vacuum necessary to operate the leak detection device. This pressure is not specific, rather it is a pressure range within the leak detector which works. Optimistically, we want the helium leak detector, and the system to which it is connected, to have the greatest possible vacuum. This gives the tracer-probe technique the maximum sensitivity with the quickest response time. As an added benefit, when one is operating at a very high vacuum,... [Pg.461]


See other pages where Specifications detector pressure sensitivity is mentioned: [Pg.165]    [Pg.27]    [Pg.401]    [Pg.225]    [Pg.252]    [Pg.104]    [Pg.21]    [Pg.1321]    [Pg.20]    [Pg.21]    [Pg.1791]    [Pg.129]    [Pg.181]    [Pg.70]    [Pg.992]    [Pg.177]    [Pg.210]    [Pg.511]    [Pg.375]    [Pg.326]    [Pg.115]    [Pg.18]    [Pg.18]    [Pg.25]    [Pg.230]    [Pg.120]    [Pg.105]    [Pg.181]    [Pg.250]    [Pg.900]    [Pg.139]    [Pg.375]    [Pg.317]    [Pg.471]    [Pg.268]    [Pg.70]    [Pg.145]    [Pg.312]   
See also in sourсe #XX -- [ Pg.94 ]




SEARCH



Detector pressure

Detector pressure sensitivity

PRESSURE-SENSITIVE

Pressure specifications

Sensitive detectors

Sensitivity pressure

Specific pressure

Specifications detector sensitivity

© 2024 chempedia.info