Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Spatial course

As detailed below, the parabolic equation, Eq. (54), describes the evolution of the isotropic distribution and has to be solved as an initial-boundary-value problem on a nonrectangular solution region whose boundaries are partly determined by the spatial course of the electric field and thus by the specific kinetic problem considered. The parabolic problem has to be completed by appropriate initial and boundary conditions, which are briefly described below. [Pg.63]

The nervous system of hamsters infected orally with scrapie has been studied extensively for the temporal-spatial course of PrP deposition in the brain (for review see ). After centripetally reaching the spinal cord, subsequent centrifugal spread of PrP deposition proceeds to the corresponding afferent dorsal root ganglia (DRG), where the protein can first be detected 76 days postinfection in half of the examined hamsters (Figure 11.2). The DRG are nodules on a dorsal spinal root that contain the cell bodies of afferent nerve fibers, some of the largest cells in the mammalian body. [Pg.316]

Modem photochemistry (IR, UV or VIS) is induced by coherent or incoherent radiative excitation processes [4, 5, 6 and 7]. The first step within a photochemical process is of course a preparation step within our conceptual framework, in which time-dependent states are generated that possibly show IVR. In an ideal scenario, energy from a laser would be deposited in a spatially localized, large amplitude vibrational motion of the reacting molecular system, which would then possibly lead to the cleavage of selected chemical bonds. This is basically the central idea behind the concepts for a mode selective chemistry , introduced in the late 1970s [127], and has continuously received much attention [10, 117. 122. 128. 129. 130. 131. 132. 133. 134... [Pg.1060]

Let us discuss further the pemrutational symmetry properties of the nuclei subsystem. Since the elechonic spatial wave function t / (r,s Ro) depends parameti ically on the nuclear coordinates, and the electronic spacial and spin coordinates are defined in the BF, it follows that one must take into account the effects of the nuclei under the permutations of the identical nuclei. Of course. [Pg.569]

Z-matriccs arc commonly used as input to quantum mechanical ab initio and serai-empirical) calculations as they properly describe the spatial arrangement of the atoms of a molecule. Note that there is no explicit information on the connectivity present in the Z-matrix, as there is, c.g., in a connection table, but quantum mechanics derives the bonding and non-bonding intramolecular interactions from the molecular electronic wavefunction, starting from atomic wavefiinctions and a crude 3D structure. In contrast to that, most of the molecular mechanics packages require the initial molecular geometry as 3D Cartesian coordinates plus the connection table, as they have to assign appropriate force constants and potentials to each atom and each bond in order to relax and optimi-/e the molecular structure. Furthermore, Cartesian coordinates are preferable to internal coordinates if the spatial situations of ensembles of different molecules have to be compared. Of course, both representations are interconvertible. [Pg.94]

Also in this case, Tp corresponds to a relaxation time which determines the coupling of the modulated variable to the external bath. The pressure scaling can be applied isotropically, whidi means that the factor is the same in all three spatial directions. More realistic is an anisotropic pressure scaling, because the box dimensions also change independently during the course of the simulation. [Pg.368]

It is the dependence of the spatial constitutive functions on the changing current configuration through F that renders the spatial constitutive equations objective. It is also this dependence that makes their construction relatively more difficult than that of their referential counterparts. If this dependence is omitted, then the spatial moduli and elastic limit functions must be isotropic to satisfy objectivity, and the spatial constitutive equations reduce to those of hypoinelasticity. Of course, there are other possible formulations for the spatial constitutive functions which are objective without requiring isotropy. One of these will be considered in the next section. [Pg.163]

The results shown in Figure 6 above are an example of this mode of analysis, but include additional information on the chemical states of the Si. The third most frequently used mode of analysis is the Auger mapping mode, in which an Auger peak of a particular element is monitored while the primary electron beam is raster scanned over an area. This mode determines the spatial distribution, across the surface, of the element of interest, rather than in depth, as depth profiling does. Of course, the second and third modes can be combined to produce a three-dimensional spatial distribution of the element. The fourth operational mode is just a subset of the third mode a line scan of the primary beam is done across a region of interest, instead of rastering over an area. [Pg.322]

Enantioselective processes involving chiral catalysts or reagents can provide sufficient spatial bias and transition state organization to obviate the need for control by substrate stereochemistry. Since such reactions do not require substrate spatial control, the corresponding transforms are easier to apply antithetically. The stereochemical information in the retron is used to determine which of the enantiomeric catalysts or reagents are appropriate and the transform is finally evaluated for chemical feasibility. Of course, such transforms are powerful because of their predictability and effectiveness in removing stereocenters from a target. [Pg.51]

It is of course also possible to arrange so that the measurements are made at every point with a fixed instrument and the data transferred to a computer equipped with suitable software to produce the grid map, all in real time. If the graph is also superimposed on a video picture from the measured area, the result will be a video, visualizing the. spatial distribution in real time. [Pg.1116]

Wetting phenomena on irregularly rough surfaces have not been studied so far. It seems quite reasonable to use computer simulation methods for this purpose. Of course, such computer simulation would be very expensive as the finite size of the simulation cells would require appropriate averaging over different spatial distributions of surface inhomogeneities. Nevertheless, with modern fast computers and using multispin coding techniques such calculations can be efficiently carried out for lattice gas systems. [Pg.286]

After adsorption, species may diffuse on the surface or, eventually, become absorbed in the bulk. Due to collisions between adsorbed species of different kinds the actual reaction step can occur. Of course, this step requires that some energetic and spatial constraints have to be fulfilled. The result of the reaction step is the formation of a product molecule. This product can be either an intermediate of the reaction or its final output. [Pg.389]

As the corrosion rate, inclusive of local-cell corrosion, of a metal is related to electrode potential, usually by means of the Tafel equation and, of course, Faraday s second law of electrolysis, a necessary precursor to corrosion rate calculation is the assessment of electrode potential distribution on each metal in a system. In the absence of significant concentration variations in the electrolyte, a condition certainly satisfied in most practical sea-water systems, the exact prediction of electrode potential distribution at a given time involves the solution of the Laplace equation for the electrostatic potential (P) in the electrolyte at the position given by the three spatial coordinates (x, y, z). [Pg.239]

The results show that at 2 torr, ku = 2.5 X 10 8 and at 760 torr ku = 1.0 X 10 8 cm.3 molecule-1 sec.-1 This is reasonably good agreement in view of the possible errors. Furthermore, the values of ku obtained are consistent with earlier estimates based on comparisons with similar reactions (10, 19). Our purpose in presenting it here is to illustrate the potential use of flames in estimating more accurate rate constants for reactions like Reaction 14. Of course, the influence of diffusion must always be accounted for in such estimations diffusion is particularly important at low pressures and for small ion concentrations. (It is often advantageous to work at low pressures because the spatial resolution is much better than at 1 atm. At low pressures most measurements are made in or close to the reaction zone itself. At high pressures, where the reaction zone is thinner, measurements are made both in the reaction zone and in the burned gases.)... [Pg.304]

In any case, it is clear from this work that spatial variations in molecular weight and morphology exist in RIM molded parts. Of course, both of these exert some degree of control over the mechanical properties, which must then also be considered to be nonuniform. [Pg.172]

In an octahedral crystal field, for example, these electron densities acquire different energies in exactly the same way as do those of the J-orbital densities. We find, therefore, that a free-ion D term splits into T2, and Eg terms in an octahedral environment. The symbols T2, and Eg have the same meanings as t2g and eg, discussed in Section 3.2, except that we use upper-case letters to indicate that, like their parent free-ion D term, they are generally many-electron wavefunctions. Of course we must remember that a term is properly described by both orbital- and spin-quantum numbers. So we more properly conclude that a free-ion term splits into -I- T 2gin octahedral symmetry. Notice that the crystal-field splitting has no effect upon the spin-degeneracy. This is because the crystal field is defined completely by its ordinary (x, y, z) spatial functionality the crystal field has no spin properties. [Pg.45]


See other pages where Spatial course is mentioned: [Pg.561]    [Pg.3]    [Pg.16]    [Pg.69]    [Pg.561]    [Pg.3]    [Pg.16]    [Pg.69]    [Pg.1015]    [Pg.32]    [Pg.666]    [Pg.1071]    [Pg.1976]    [Pg.2377]    [Pg.2644]    [Pg.636]    [Pg.234]    [Pg.272]    [Pg.463]    [Pg.8]    [Pg.256]    [Pg.77]    [Pg.264]    [Pg.7]    [Pg.165]    [Pg.841]    [Pg.397]    [Pg.668]    [Pg.31]    [Pg.349]    [Pg.100]    [Pg.102]    [Pg.202]    [Pg.495]    [Pg.744]    [Pg.788]    [Pg.64]    [Pg.202]   
See also in sourсe #XX -- [ Pg.16 ]




SEARCH



© 2024 chempedia.info