Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sources spectroscopic

Contents Spectroscopy with Lasers Introduction. Characteristic Features of Lasers as Spectroscopic light Sources. Spectroscopic Applications of Lasers. High-Resolution Spectroscopy Based on Saturation Effects. Spectroscopy of Laser Media. Conclusion. Zusammen-fassung. (418 references). [Pg.184]

Temperature can be measured from heat transfer by conduction, convection, or radiation. Household thermometers use either the expansion of metals or other substances or the increase in resistance with temperature. Thermocouples measure the electromotive force generated by temperature difference. Pyrometers measure infrared radiation from a heat source. Spectroscopic thermometry compares the spectrum of radiation against a blackbody spectrum. Temperature-sensitive paints and liquid crystals change intensity of radiation in certain wavelengths with temperature. [Pg.1824]

Spectroscopy is the most important experimental source of infomiation on intemiolecular interactions. A wide range of spectroscopic teclmiques is being brought to bear on the problem of weakly bound or van der Waals complexes [94, 95]. Molecular beam microwave spectroscopy, pioneered by Klemperer and refined by Flygare, has been used to detemiine the microwave spectra of a large number of weakly bound complexes and obtain stmctiiral infomiation... [Pg.200]

The foremost of the modem teclmiques is tlie use of lasers as spectroscopic tools. Lasers are extremely versatile light sources. They can be designed with many usetlil properties (not all in the same instmment) such as high intensity, narrow frequency bandwidth with high-frequency stability, tunability over reasonable frequency ranges, low-divergence beams which can be focused into very small spots, or pulsed beams with... [Pg.1122]

Probably the simplest mass spectrometer is the time-of-fiight (TOP) instrument [36]. Aside from magnetic deflection instruments, these were among the first mass spectrometers developed. The mass range is theoretically infinite, though in practice there are upper limits that are governed by electronics and ion source considerations. In chemical physics and physical chemistry, TOP instniments often are operated at lower resolving power than analytical instniments. Because of their simplicity, they have been used in many spectroscopic apparatus as detectors for electrons and ions. Many of these teclmiques are included as chapters unto themselves in this book, and they will only be briefly described here. [Pg.1351]

Dielectric constants of metals, semiconductors and insulators can be detennined from ellipsometry measurements [38, 39]. Since the dielectric constant can vary depending on the way in which a fihn is grown, the measurement of accurate film thicknesses relies on having accurate values of the dielectric constant. One connnon procedure for detennining dielectric constants is by using a Kramers-Kronig analysis of spectroscopic reflectance data [39]. This method suffers from the series-tennination error as well as the difficulty of making corrections for the presence of overlayer contaminants. The ellipsometry method is for the most part free of both these sources of error and thus yields the most accurate values to date [39]. [Pg.1887]

New metliods appear regularly. The principal challenges to the ingenuity of the spectroscopist are availability of appropriate radiation sources, absorption or distortion of the radiation by the windows and other components of the high-pressure cells, and small samples. Lasers and synchrotron radiation sources are especially valuable, and use of beryllium gaskets for diamond-anvil cells will open new applications. Impulse-stimulated Brillouin [75], coherent anti-Stokes Raman [76, 77], picosecond kinetics of shocked materials [78], visible circular and x-ray magnetic circular dicliroism [79, 80] and x-ray emission [72] are but a few recent spectroscopic developments in static and dynamic high-pressure research. [Pg.1961]

Van der Waals complexes can be observed spectroscopically by a variety of different teclmiques, including microwave, infrared and ultraviolet/visible spectroscopy. Their existence is perhaps the simplest and most direct demonstration that there are attractive forces between stable molecules. Indeed the spectroscopic properties of Van der Waals complexes provide one of the most detailed sources of infonnation available on intennolecular forces, especially in the region around the potential minimum. The measured rotational constants of Van der Waals complexes provide infonnation on intennolecular distances and orientations, and the frequencies of bending and stretching vibrations provide infonnation on how easily the complex can be distorted from its equilibrium confonnation. In favourable cases, the whole of the potential well can be mapped out from spectroscopic data. [Pg.2439]

The vast majority of single-molecule optical experiments employ one-photon excited spontaneous fluorescence as the spectroscopic observable because of its relative simplicity and inlierently high sensitivity. Many molecules fluoresce with quantum yields near unity, and spontaneous fluorescence lifetimes for chromophores with large oscillator strengths are a few nanoseconds, implying that with a sufficiently intense excitation source a single... [Pg.2485]

Figure C3.1.1. The basic elements of a time-resolved spectral measurement. A pump source perturbs tlie sample and initiates changes to be studied. Lasers, capacitive-discharge Joule heaters and rapid reagent mixers are some examples of pump sources. The probe and detector monitor spectroscopic changes associated with absorjDtion, fluorescence, Raman scattering or any otlier spectral approach tliat can distinguish the initial, intennediate and final... Figure C3.1.1. The basic elements of a time-resolved spectral measurement. A pump source perturbs tlie sample and initiates changes to be studied. Lasers, capacitive-discharge Joule heaters and rapid reagent mixers are some examples of pump sources. The probe and detector monitor spectroscopic changes associated with absorjDtion, fluorescence, Raman scattering or any otlier spectral approach tliat can distinguish the initial, intennediate and final...
ZIXDO/S is parameteri/ed to reproduce spectroscopic transitions, therefore we do not recommend using this method for geometry optim i/ation. You can obtain better results by performing a single-point calculation wuth ZIXDO/S on a geometry obtained from the Model Builder, an optim Ization iisln g one of IlyperChem s oth er methods, or an external source. [Pg.151]

Note that we are interested in nj, the atomic quantum number of the level to which the electron jumps in a spectroscopic excitation. Use the results of this data treatment to obtain a value of the Rydberg constant R. Compare the value you obtain with an accepted value. Quote the source of the accepted value you use for comparison in your report. What are the units of R A conversion factor may be necessary to obtain unit consistency. Express your value for the ionization energy of H in units of hartrees (h), electron volts (eV), and kJ mol . We will need it later. [Pg.76]

Such is the case of 2-amino or 2-(monoalkyl or arylamino)-4-oxo-selenazolines. Thus because of this aminoc=iimino tautomerism. these compounds can be called 2-aminose enazo ines or 2-iminoselenazolidines and can be classed either as selenazolines or selenazolidines. This has been a source of controversy that has been resolved by recent spectroscopic studies (67. 68). [Pg.261]

From 1960 onwards, fhe increasing availabilify of intense, monochromatic laser sources provided a fremendous impetus to a wide range of spectroscopic investigations. The most immediately obvious application of early, essentially non-tunable, lasers was to all types of Raman spectroscopy in the gas, liquid or solid phase. The experimental techniques. [Pg.362]

For the visible and near-ultraviolet portions of the spectmm, tunable dye lasers have commonly been used as the light source, although they are being replaced in many appHcation by tunable soHd-state lasers, eg, titanium-doped sapphire. Optical parametric oscillators are also developing as useful spectroscopic sources. In the infrared, tunable laser semiconductor diodes have been employed. The tunable diode lasers which contain lead salts have been employed for remote monitoring of poUutant species. Needs for infrared spectroscopy provide an impetus for continued development of tunable infrared lasers (see Infrared technology and RAMAN spectroscopy). [Pg.17]

Spectroscopic methods for the deterrnination of impurities in niobium include the older arc and spark emission procedures (53) along with newer inductively coupled plasma source optical emission methods (54). Some work has been done using inductively coupled mass spectroscopy to determine impurities in niobium (55,56). X-ray fluorescence analysis, a widely used method for niobium analysis, is used for routine work by niobium concentrates producers (57,58). Paying careful attention to matrix effects, precision and accuracy of x-ray fluorescence analyses are at least equal to those of the gravimetric and ion-exchange methods. [Pg.25]

Radiometry. Radiometry is the measurement of radiant electromagnetic energy (17,18,134), considered herein to be the direct detection and spectroscopic analysis of ambient thermal emission, as distinguished from techniques in which the sample is actively probed. At any temperature above absolute zero, some molecules are in thermally populated excited levels, and transitions from these to the ground state radiate energy at characteristic frequencies. Erom Wien s displacement law, T = 2898 //m-K, the emission maximum at 300 K is near 10 fim in the mid-ir. This radiation occurs at just the energies of molecular rovibrational transitions, so thermal emission carries much the same information as an ir absorption spectmm. Detection of the emissions of remote thermal sources is the ultimate passive and noninvasive technique, requiring not even an optical probe of the sampled volume. [Pg.315]

The spectroscopic techniques that have been most frequently used to investigate biomolecular dynamics are those that are commonly available in laboratories, such as nuclear magnetic resonance (NMR), fluorescence, and Mossbauer spectroscopy. In a later chapter the use of NMR, a powerful probe of local motions in macromolecules, is described. Here we examine scattering of X-ray and neutron radiation. Neutrons and X-rays share the property of being found in expensive sources not commonly available in the laboratory. Neutrons are produced by a nuclear reactor or spallation source. X-ray experiments are routinely performed using intense synclirotron radiation, although in favorable cases laboratory sources may also be used. [Pg.238]

Laterally inhomogeneous films and patterned structures of microelectronic and optoelectronic applications require small measuring spots. Today s measurements in 50 pm X 50 pm areas are standard for p-spot spectroscopic ellipsometers used in fa-blines. Areas more than ten times smaller can be analyzed by use of discrete-wave-length ellipsometers equipped with laser-light sources. [Pg.270]

Relatively little has been reported regarding the determination of the purity of the halide salts other than by standard spectroscopic measurements and microanalysis. This is largely because the halide salts are rarely used as solvents themselves, but are generally simply a source of the desired cation. Also, the only impurities likely to be present in any significant quantity are unreacted starting materials and residual reaction solvents. Thus, for most applications it is sufficient to ensure that they are free of these by use of FF NMR spectroscopy. [Pg.11]


See other pages where Sources spectroscopic is mentioned: [Pg.88]    [Pg.819]    [Pg.746]    [Pg.15]    [Pg.88]    [Pg.819]    [Pg.746]    [Pg.15]    [Pg.80]    [Pg.1235]    [Pg.1240]    [Pg.1263]    [Pg.1296]    [Pg.1968]    [Pg.1971]    [Pg.2124]    [Pg.3027]    [Pg.611]    [Pg.374]    [Pg.388]    [Pg.446]    [Pg.2]    [Pg.410]    [Pg.310]    [Pg.313]    [Pg.316]    [Pg.461]    [Pg.732]    [Pg.267]    [Pg.611]    [Pg.153]    [Pg.146]    [Pg.91]    [Pg.336]   
See also in sourсe #XX -- [ Pg.167 ]




SEARCH



Lasers as Spectroscopic Light Sources

Lasers spectroscopic sources

Spectroscopic Light Sources

Spectroscopic components radiation sources

Spectroscopic techniques excitation sources

© 2024 chempedia.info