Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sorbent adsorption

Index Entries Succinic acid sorbent adsorption hot water regeneration glucose fermentation broth. [Pg.653]

J. U. Keller, F. Dreisbach, H. Rave, R. Staudt, M. Tomalla Measurement of gas mixture adsorption equilibria of natural gas compounds on microporous sorbents. Adsorption 5 (1999) 199-214. [Pg.394]

If, besides the lengthened path of the migrating particles, their interaction with the sorbent (adsorption) has also to be considered, then this influence must also be included in the correction factor [2,11] by means of the factor, which is defined in analogy to the Rf factor in chromatography. [Pg.36]

Keywords Lignocellulosic sorbent, adsorption, organic pollutant, chemical modification of cellulose, biosorbent... [Pg.483]

For a macroporous sorbent the situation is slightly more complex. A differential balance on a shell element, assuming diffusivity transport through the macropores with rapid adsorption at the surface (or in the micropores), yields... [Pg.260]

Sohd sorbent materials have the abiUty to adsorb water vapor until an equiUbrium condition is attained. The total weight of water that can be adsorbed in a particular material is a function of the temperature of the material and of the relative humidity of the air (see Adsorption). To regenerate the sorbent, its temperature must be raised or the relative humidity lowered. The sohd sorbents most commonly used are siUca (qv), alumina (see Aluminum compounds), and molecular sieves (qv). [Pg.362]

Adsorption Processes. The processes based on adsorption of hydrogen sulfide onto a fixed bed of soHd material are among the oldest types of gas treating appHcations (4). Two common sorbent materials for low concentration gas streams are iron oxide and zinc oxide. [Pg.209]

The sulfur is thus removed from the gas stream and trapped in the sorbent as iron sulfide [1317-37-9]. Over time all of the iron oxide becomes sulfided and the adsorptive capacity of the sorbent becomes exhausted. The bed can be partially regenerated by oxidation, as follows ... [Pg.209]

Fig. 1. Iron oxide process where Kl represents the iron oxide sorbent bed ( ), the adsorption system and (-... Fig. 1. Iron oxide process where Kl represents the iron oxide sorbent bed ( ), the adsorption system and (-...
An additional benefit of adsorption-based sulfur dioxide removal processes is that nitrogen oxides, NO, are also removed by the sorbent. Nitrogen oxides desorb when the sorbent is heated using hot air. [Pg.215]

Adsorption and ion exchange share so many common features in regard to apphcation in batch and fixed-bed processes that they can be grouped together as sorption for a unified treatment. These processes involve the transfer and resulting equilibrium distribution of one or more solutes between a fluid phase and particles. The partitioning of a single solute between fluid and sorbed phases or the selectivity of a sorbent towards multiple solutes makes it possible to separate solutes from a bulk fluid phase or from one another. [Pg.1496]

The working capacity of a sorbent depends on fluid concentrations and temperatures. Graphical depiction of soration equilibrium for single component adsorption or binary ion exchange (monovariance) is usually in the form of isotherms [n = /i,(cd or at constant T] or isosteres = pi(T) at constant /ij. Representative forms are shown in Fig. I6-I. An important dimensionless group dependent on adsorption equihbrium is the partition ratio (see Eq. 16-125), which is a measure of the relative affinities of the sorbea and fluid phases for solute. [Pg.1497]

Adsorption with strongly favorable isotherms and ion exchange between strong electrolytes can usually be carried out until most of the stoichiometric capacity of the sorbent has been utilized, corresponding to a thin MTZ. Consequently, the total capacity of the bed is... [Pg.1498]

The quantity of a solute adsorbed can be given conveniently in terms of moles or volume (for adsorption) or ion-equivalents (for ion exchange) per unit mass or volume (dry or wet) of sorbent. Common units for adsorption are moV(m of fluid) for the fluid-phase concentration Cj and moV(kg of clean adsorbent) for adsorbed-phase concentration /ij. For gases, partial pressure may replace concentration. [Pg.1503]

Adsorption and Desorption Adsorbents may be used to recover solutes from supercritical fluid extracts for example, activated carbon and polymeric sorbents may be used to recover caffeine from CO9. This approach may be used to improve the selectivity of a supercritical fluid extraction process. SCF extraction may be used to regenerate adsorbents such as activated carbon and to remove contaminants from soil. In many cases the chemisorption is sufficiently strong that regeneration with CO9 is limited, even if the pure solute is quite soluble in CO9. In some cases a cosolvent can be added to the SCF to displace the sorbate from the sorbent. Another approach is to use water at elevated or even supercritical temperatures to facilitate desorption. Many of the principles for desorption are also relevant to extraction of substances from other substrates such as natural products and polymers. [Pg.2003]

Last time development of methods of iodine determination, which include preliminary sorption preconcentration of microcomponents and their subsequent determination in phase of concentrate get great practical significance. Silica gel (SG) with adsorptively modified quaternary ammonium salts (QAS) gets properties of anion-exchange resin. The sorbents modified in this way can be used successfully for determination of different anions. [Pg.155]

There was studied dependence of sorption rate values of microamounts high listed elements from time of their contact with sorbents, pH media and means of equilibrium concentration. It is shown that owing to exchange of sorbents surface characteristics, its hydrating rate value and heterogeneity of sorbate and hydrolyzed forms of metals investigated interaction with surface can simultaneously proceed on several mechanisms. The contributions of various factors into adsorption of elements-analogues are depended from sorption conditions and nature of sorbent surface. [Pg.265]

Hydrated alumina is one of the most widespread hydrophilic polar sorbents for concentration and separation of different substances. In water Al Oj shows cation or anion exchange properties and its protolytic and adsorption characteristics depend on a way of obtaining. [Pg.266]

Certain chemicals (sorbents) have the ability to absorb moisture from a gas they may be either solid or liquid. Performance of a chemical dehumidifi cation device depends on the sorbent used. The sorbent must t>e able to attract and remove the sorbate, such as water, from the gas stream, Stirbems absorb water on the surface of the material by adsorption or by chemically combining with water (absorption). If the unit is regenerative, the process is reversible, allowing water to be removed. This is achieved by a sorbent such as silica gel, alumina gel, activated alumina, lithium chloride salt, lithium chloride solution, glycol solution, or molecular sieves. In the case of nonregenerative equipment, hygroscopic salts such as calcium chloride, urea, or sodium chloride are used. [Pg.724]

The consideration made above allows us to predict good chromatographic properties of the bonded phases composed of the adsorbed macromolecules. On the one hand, steric repulsion of the macromolecular solute by the loops and tails of the modifying polymer ensures the suppressed nonspecific adsorptivity of a carrier. On the other hand, the extended structure of the bonded phase may improve the adaptivity of the grafted functions and facilitate thereby the complex formation between the adsorbent and solute. The examples listed below illustrate the applicability of the composite sorbents to the different modes of liquid chromatography of biopolymers. [Pg.142]


See other pages where Sorbent adsorption is mentioned: [Pg.274]    [Pg.303]    [Pg.586]    [Pg.612]    [Pg.1392]    [Pg.256]    [Pg.62]    [Pg.236]    [Pg.274]    [Pg.303]    [Pg.586]    [Pg.612]    [Pg.1392]    [Pg.256]    [Pg.62]    [Pg.236]    [Pg.209]    [Pg.210]    [Pg.215]    [Pg.1497]    [Pg.1497]    [Pg.1497]    [Pg.1498]    [Pg.1499]    [Pg.1510]    [Pg.1540]    [Pg.1541]    [Pg.1553]    [Pg.266]    [Pg.181]    [Pg.305]    [Pg.306]    [Pg.294]    [Pg.229]    [Pg.162]   
See also in sourсe #XX -- [ Pg.291 ]




SEARCH



© 2024 chempedia.info