Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvents, acidic ionic

If a drybox is not available, the preparation can also be carried out by use of a dry, unreactive solvent (typically an alkane) as a blanket against hydrolysis. This has been suggested in the patent literature as a method for the large-scale industrial preparation of Eewis acid-based ionic liquids, as the solvent also acts as a heat-sink for the exothermic complexation reaction [28]. At the end of the reaction, the ionic liquid forms an immiscible layer beneath the protecting solvent. The ionic liquid may then either be removed by syringe, or else the solvent may be removed by distillation before use. In the former case it is likely that the ionic liquid will be contaminated with traces of the organic solvent, however. [Pg.13]

In cases in which the ionic liquid is not directly involved in creating the active catalytic species, a co-catalytic interaction between the ionic liquid solvent and the dissolved transition metal complex still often takes place and can result in significant catalyst activation. When a catalyst complex is, for example, dissolved in a slightly acidic ionic liquid, some electron-rich parts of the complex (e.g., lone pairs of electrons in the ligand) will interact with the solvent in a way that will usually result in a lower electron density at the catalytic center (for more details see Section 5.2.3). [Pg.222]

Recently several pubhcations have examined replacing aqueous solvents with ionic liquids. Since simple and complex sugars are soluble in many imidazolium hahdes, water is not required as a co-solvent and degradation of HMF is minimal. Lansalot-Matras et al. reported on the dehydration of fmctose in imidazolium ionic liquids using acid catalyst (6). Moreau et al. reported that l-H-3-methylimidazolium chloride has sufficient acidity to operate without added acid (7). And we reported that a 0.5 wt% loading (6 mole% compared to substrate) of many metal halides in 1-ethyl-3-methylimidazohum chloride ([EMIM]C1) result in catalytically active materials particularly useful for dehydration reactions (8). [Pg.411]

Crystalline salts of many organic acids and bases often have a maximum solubility in a mixture of water and water-miscible solvents. The ionic part of snch a molecule requires a strongly polar solvent, snch as water, to initiate dissociation. A mixture of water-miscible solvents hydrates and dissociates the ionic fraction of pollutants at a higher concentration than wonld either solvent alone. Therefore, from a practical point of view, the deliberate nse of a water-soluble solvent as a cosolvent in the formnlation of toxic organic chemicals can lead to an increased solnbility of hydrophobic organic contaminants in the aqueous phase and, conse-qnently, to a potential increase in their transport from land surface to groundwater. [Pg.134]

Gui JZ, Liu D, Wang C, Lu F, Lian JZ, Jiang H, Sun ZL (2009) One-Pot Synthesis of 3,4-Dihydropyrimidin-2(lH)-ones Catalyzed by Acidic Ionic Liquids Under Solvent-Free Conditions. Synth Commun 39 3436-3443... [Pg.272]

Several authors reported the use of ionic liquids containing protonic acid in catalysis (118-120). For example, strong Bronsted acidity in ionic liquids has been reported to successfully catalyze tetrahydropyranylation of alcohols (120). Tetra-hydropyranylation is one of the most widely used processes for the protection of alcohols and phenols in multi-step syntheses. Although the control experiments with the ionic liquids showed negligible activity in the absence of the added acids, high yields of product were obtained with the ionic liquid catalysts TPPTS or TPP.HBr-[BMIM]PF6. By rapid extraction of the product from the acidic ionic liquid phase by diethyl ether, the reaction medium was successfully reused for 22 cycles without an appreciable activity loss. A gradual loss of the catalyst and a reduced volume of the ionic liquid were noted, however, as a consequence of transfer to the extraction solvent. [Pg.182]

The acylative cleavage of the cyclic ether tetrahydrofuran showed an excellent yield (95%) to 4-iodobutylbenzoate when fully acidic ionic liquid [EMIM]Al2Cl7 was used, but the yield to di-functionalized product (61%) suffered when the mildly acidic halogenoaluminate ionic liquid (which has a mole fraction of AICI3 (x) at a value of 0.52) was used as the solvent. In contrast, for 1,5-dimethyltetrahydrofuran and tetrahydropyran, a good yield to the cleavage products was obtained when the mildly acidic chloroaluminate was used. [Pg.187]

Cole, A.C. et al.. Novel Bronsted acid ionic liquids and their use as dual solvent-catalysts, /. Am. Chem. Soc., 124,5962,2002. [Pg.61]

We now have to consider the so-called irregular rearrangements . These involve dissociation by breaking a P —X bond to give a P+ X ionic structure, and have been studied by Westheimer (open chain phosphoranes) (76JA179) and Ramirez (cyclic phosphoranes) (71APO(9)25). Polar solvents, acid catalysis and even change of temperature can influence the equilibrium. [Pg.535]

The physical properties of sulfuric acid are listed in Table 10.3. The dielectric constant is even higher than that of water, making it a good solvent for ionic substances and leading to extensive autoionization. The high viscosity, some 25 times that of water, introduces experimental difficulties Solutes are slow to dissolve and slow to crystallize. It is also difficult to remove adhering solvent from crystallized materials. Furthermore, solvent that has not drained from prepared crystals is not reudily removed by evaporation because of the very low vapor pressure of sulfuric acid... [Pg.194]

In addition to pure thermal stability, if the polymer is to be heated in air, one must also consider oxidative stability. In the carbon series oxidation always leads to more stable species and tends to occur, blit in the silicon series there is a much higher tendency towards reaction with oxygen. This is the principal reason for the low utility of the silane polymer. Finally, a third factor in polymer stability is the ease of attack by solvents, acids, bases, etc. This is largely determined by the ionic nature of the bonds involved. The silica based polymers should be more susceptible to such attack than carbon, since they have a higher percent of ionic nature. [Pg.1348]

Carboxylic acids. Even in quite dilute solution in non-polar solvents, acids exist essentially as dimeric species, which may be readily explained on the basis of the electronic structure of the carboxyl group. Powerful hydrogen bonding between the molecules, and the strength of these bonds, has been accounted for on the basis of a large contribution of an ionic resonance structure. [Pg.299]

In this chapter alternative acidic ionic liquids systems will be briefly presented that have been recently developed as alternatives to chloroaluminate ionic liquids. In spite of this selection, it should be noted that chloroaluminate ionic liquids may still be attractive catalyst phases in reactions where their tuneable acidity and solubility properties offer advantage over AICI3 in organic solvents. [Pg.109]

Abbott et al. [98-103] reported the synthesis and characterization of new moisture-stable, Lewis acidic ionic liquids made from metal chlorides and commercially available quaternary ammonium salts (see Chapter 2.3). They showed that mixtures of choline chloride (2-hydroxyethyltrimethylammonium chloride, [Me3NC2H40H]Cl and MCU (M=Zn, Sn) give conducting and viscous liquids at or around room temperature. These deep eutectic solvents/ionic liquids are easy to prepare, are water-and air-stable, and their low cost enables their use in large-scale applications. Furthermore, they reported [104] that a dark green, viscous liquid can be formed by mixing choline chloride with chromium(III) chloride hexahydrate and that the... [Pg.232]

Solvent acidity plays a critical role in the reaction of singlet oxygen with /nmv-4-propenylanisol 115, and the authors invoke a proton transfer from methanol or acid to the ionic intermediates to explain the enhanced dioxetane concentrations in methanol and in nonprotic solvents with benzoic acid (Sch. 66) [117]. [Pg.342]

A possible solution to this problem of low rates is to use ionic liquids as solvents. Certain ionic liquids, e.g. those containing the dicyanamide anion, (NC)2N, have been shown to dissolve sucrose in concentrations of several hundred grams per litre [210]. The lipase-catalyzed acylation of glucose with fatty acid esters has been shown to occur in a mixture of an ionic liquid, [bmim][BF4], and tert-butanol [211]. [Pg.375]


See other pages where Solvents, acidic ionic is mentioned: [Pg.270]    [Pg.293]    [Pg.124]    [Pg.266]    [Pg.292]    [Pg.331]    [Pg.332]    [Pg.158]    [Pg.452]    [Pg.270]    [Pg.98]    [Pg.303]    [Pg.174]    [Pg.266]    [Pg.292]    [Pg.331]    [Pg.332]    [Pg.242]    [Pg.338]    [Pg.73]    [Pg.243]    [Pg.348]    [Pg.26]    [Pg.98]    [Pg.561]    [Pg.563]    [Pg.16]    [Pg.292]    [Pg.418]    [Pg.316]   
See also in sourсe #XX -- [ Pg.415 , Pg.416 ]




SEARCH



Acidity Ionic solvents

Acids solvents

Ionic acidic

Ionic solvent

Solvents acidic

Solvents acidity

© 2024 chempedia.info