Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent transition metal catalysis

In comparison with traditional biphasic catalysis using water, fluorous phases, or polar organic solvents, transition metal catalysis in ionic liquids represents a new and advanced way to combine the specific advantages of homogeneous and heterogeneous catalysis. In many applications, the use of a defined transition metal complex immobilized on a ionic liquid support has already shown its unique potential. Many more successful examples - mainly in fine chemical synthesis - can be expected in the future as our loiowledge of ionic liquids and their interactions with transition metal complexes increases. [Pg.253]

In comparison to traditional biphasic catalysis using water, fluorous phases or polar organic solvents, transition metal catalysis in ionic liquids represents a new and advanced way of combining the specific advantages of homogeneous and heterogeneous catalysis. [Pg.192]

Many transition metal complexes dissolve readily in ionic liquids, which enables their use as solvents for transition metal catalysis. Sufficient solubility for a wide range of catalyst complexes is an obvious, but not trivial, prerequisite for a versatile solvent for homogenous catalysis. Some of the other approaches to the replacement of traditional volatile organic solvents by greener alternatives in transition metal catalysis, namely the use of supercritical CO2 or perfluorinated solvents, very often suffer from low catalyst solubility. This limitation is usually overcome by use of special ligand systems, which have to be synthesized prior to the catalytic reaction. [Pg.213]

In this context, the use of ionic liquids with halogen-free anions may become more and more popular. In 1998, Andersen et al. published a paper describing the use of some phosphonium tosylates (all with melting points >70 °C) in the rhodium-catalyzed hydroformylation of 1-hexene [13]. More recently, in our laboratories, we found that ionic liquids with halogen-free anions and with much lower melting points could be synthesized and used as solvents in transition metal catalysis. [BMIM][n-CgHi7S04] (mp = 35 °C), for example, could be used as catalyst solvent in the rhodium-catalyzed hydroformylation of 1-octene [14]. [Pg.216]

Why use Ionic Liquids as Solvents for Transition Metal Catalysis ... [Pg.217]

Ionic liquids with wealdy coordinating, inert anions (such as [(CF3S02)2N] , [BFJ , or [PFg] under anhydrous conditions) and inert cations (cations that do not coordinate to the catalyst themselves, nor form species that coordinate to the catalyst under the reaction conditions used) can be looked on as innocent solvents in transition metal catalysis. In these cases, the role of the ionic liquid is solely to provide a more or less polar, more or less weakly coordinating medium for the transition metal catalyst, but which additionally offers special solubility for feedstock and products. [Pg.221]

Ionic liquids formed by treatment of a halide salt with a Lewis acid (such as chloro-aluminate or chlorostannate melts) generally act both as solvent and as co-catalyst in transition metal catalysis. The reason for this is that the Lewis acidity or basicity, which is always present (at least latently), results in strong interactions with the catalyst complex. In many cases, the Lewis acidity of an ionic liquid is used to convert the neutral catalyst precursor into the corresponding cationic active form. The activation of Cp2TiCl2 [26] and (ligand)2NiCl2 [27] in acidic chloroaluminate melts and the activation of (PR3)2PtCl2 in chlorostannate melts [28] are examples of this land of activation (Eqs. 5.2-1, 5.2-2, and 5.2-3). [Pg.221]

However, research into transition metal catalysis in ionic liquids should not focus only on the question of how to make some specific products more economical or ecological by use of a new solvent and, presumably, a new multiphasic process. Since it bridges the gap between homogeneous and heterogeneous catalysis, in a novel and highly attractive manner, the application of ionic liquids in transition metal catalysis gives access to some much more fundamental and conceptual questions for basic research. [Pg.253]

The wide electrochemical windows of ionic liquids, in combination with their ability to serve as solvents for transition metal catalysts, opens up new possibilities for a combination of electrochemistry and transition metal catalysis. A very exciting first example has recently been published by Bedioui et al. [27]. [Pg.354]

Transition metal catalysis on solid supports can also be applied to indole formation, as shown by Dai and coworkers [41]. These authors reported a palladium- or copper-catalyzed procedure for the generation of a small indole library (Scheme 7.23), representing the first example of a solid-phase synthesis of 5-arylsulfamoyl-substituted indole derivatives. The most crucial step was the cydization of the key polymer-bound sulfonamide intermediates. Whereas the best results for the copper-mediated cydization were achieved using l-methyl-2-pyrrolidinone (NMP) as solvent, the palladium-catalyzed variant required the use of tetrahydrofuran in order to achieve comparable results. Both procedures afforded the desired indoles in good yields and excellent purities [41]. [Pg.310]

Many transition metal complexes dissolve readily in ionic liquids, thus enabling their use as solvents for transition metal catalysis. Sufficient solubility for a wide range of... [Pg.186]

SUPPORTED LIQUID-PHASE SYSTEMS IN TRANSITION METAL CATALYSIS Bulk solvent... [Pg.140]

In the following sub-chapters two selected examples will be presented to illustrate general concepts for transition metal catalysis in ionic liquids. In both examples the role of the ionic liquid is different being alternatively used mainly in its function as ligand precursor or selective extraction solvent respectively. [Pg.111]

They are good solvents for a wide range of inorganic and organic materials at low temperature, and usual combinations of reagents can be brought into the same phase. Ionic liquids represent a unique class of new reaction media for transition metal catalysis. [Pg.127]

The above characterizations primarily concern the interactions between molecular solutes and ILs. However, ILs are also good solvents for ionic compounds, and have been studied extensively as media for transition metal catalysis [4, 38, 219] and for the extraction of heavy metals [23]. ILs are capable of solvating even simple salts, such as NaCl, to some degree [219], and in fact the removal of halide impurities resulting from synthesis can be a considerable challenge [68]. However, ionic complexes are generally far more soluble than simple salts [220], and we focus our attention on these systems as they have received greater study and are more relevant to the processes noted above. [Pg.114]


See other pages where Solvent transition metal catalysis is mentioned: [Pg.214]    [Pg.216]    [Pg.233]    [Pg.253]    [Pg.110]    [Pg.578]    [Pg.342]    [Pg.535]    [Pg.184]    [Pg.192]    [Pg.1391]    [Pg.214]    [Pg.216]    [Pg.233]    [Pg.253]    [Pg.144]    [Pg.200]    [Pg.40]    [Pg.292]    [Pg.17]    [Pg.163]    [Pg.114]   
See also in sourсe #XX -- [ Pg.372 ]




SEARCH



Catalysis transition metal

Green solvents transition metal catalysis

Solvents catalysis

Transition catalysis

Transition metal-catalysis metals

Why use Ionic Liquids as Solvents for Transition Metal Catalysis

© 2024 chempedia.info