Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent reactivation technique

The amount of bonded surfactant can be determined by simple techniques. A dissolution technique proved to be very convenient for the optimization of non-reactive surface treatment and also for the characterization of the efficiency of the treating technology [74,84]. First the surface of the filler is covered with increasing amounts of surfactant, then the non-bonded part is dissolved with a solvent. The technique is demonstrated in Fig. 11, which presents a dissolution curve of stearic acid on a CaC03 filler. Surface treatment is preferably carried out with the proportionally bonded surfactant (cioo)j this composition the total amount of surfactant used for the treatment is bonded to the filler surface. The filler can adsorb more surfactant (Cjnax)>but during compounding a part of it can be removed from the surface by dissolution or simply by shear and might deteriorate properties. [Pg.138]

Carbon dioxide removal by reactive absorption in amine solutions is also applied on the commercial scale, for instance, in the treatment of flue gas (see later in this chapter). Another possible application field of the technique is gas desulfurization, in which H2S is removed and converted to sulfur by means of reactive absorption. Aqueous solutions of ferric chelates (160-162) as well as tetramethylene sulfone, pyridine, quinoline, and polyglycol ether solutions of S02 (163,164) have been proposed as solvents. Reactive absorption can also be used for NOx reduction and removal from flue or exhaust gases (165,166). The separation of light olefins and paraffins by means of a reversible chemical com-plexation of olefins with Ag(I) or Cu(I) compounds in aqueous and nonaqueous solutions is another very interesting example of reactive absorption, one that could possibly replace the conventional cryogenic distillation technology (167). [Pg.286]

D. A. Liotard, in Structure and Reactivity in Aqueous Solutions, C. J. Cramer and D. G. Truhlar, Eds., American Chemical Society, Washington, DC, 1994, pp. 24-49. Solvation Modeling in Aqueous and Nonaqueous Solvents New Techniques and a Reexamination of... [Pg.72]

The protection system used with polyvinyl acetate emulsions also affects solvent reactivation. Solvent reactivation describes the technique whereby dried adhesive films are wet with solvents in order to reactivate the adhe-... [Pg.390]

Quaternary ammonium salts compounds of the type R4N" X find application m a technique called phase transfer catalysis A small amount of a quaternary ammonium salt promotes the transfer of an anion from aqueous solution where it is highly solvated to an organic solvent where it is much less solvated and much more reactive... [Pg.956]

As with polyesters, the amidation reaction of acid chlorides may be carried out in solution because of the enhanced reactivity of acid chlorides compared with carboxylic acids. A technique known as interfacial polymerization has been employed for the formation of polyamides and other step-growth polymers, including polyesters, polyurethanes, and polycarbonates. In this method the polymerization is carried out at the interface between two immiscible solutions, one of which contains one of the dissolved reactants, while the second monomer is dissolved in the other. Figure 5.7 shows a polyamide film forming at the interface between an aqueous solution of a diamine layered on a solution of a diacid chloride in an organic solvent. In this form interfacial polymerization is part of the standard repertoire of chemical demonstrations. It is sometimes called the nylon rope trick because of the filament of nylon produced by withdrawing the collapsed film. [Pg.307]

Powder Preparation. The goal in powder preparation is to achieve a ceramic powder which yields a product satisfying specified performance standards. Examples of the most important powder preparation methods for electronic ceramics include mixing/calcination, coprecipitation from solvents, hydrothermal processing, and metal organic decomposition. The trend in powder synthesis is toward powders having particle sizes less than 1 p.m and Httie or no hard agglomerates for enhanced reactivity and uniformity. Examples of the four basic methods are presented in Table 2 for the preparation of BaTiO powder. Reviews of these synthesis techniques can be found in the Hterature (2,5). [Pg.310]

Interfdci l Composite Membra.nes, A method of making asymmetric membranes involving interfacial polymerization was developed in the 1960s. This technique was used to produce reverse osmosis membranes with dramatically improved salt rejections and water fluxes compared to those prepared by the Loeb-Sourirajan process (28). In the interfacial polymerization method, an aqueous solution of a reactive prepolymer, such as polyamine, is first deposited in the pores of a microporous support membrane, typically a polysulfone ultrafUtration membrane. The amine-loaded support is then immersed in a water-immiscible solvent solution containing a reactant, for example, a diacid chloride in hexane. The amine and acid chloride then react at the interface of the two solutions to form a densely cross-linked, extremely thin membrane layer. This preparation method is shown schematically in Figure 15. The first membrane made was based on polyethylenimine cross-linked with toluene-2,4-diisocyanate (28). The process was later refined at FilmTec Corporation (29,30) and at UOP (31) in the United States, and at Nitto (32) in Japan. [Pg.68]

During the past 20 y numerous other highly coloured halogen cations have been characterized by Raman spectroscopy. X-ray crystallography, and other techniques, as summarized in Table 17.18. Typical preparative routes involve direct oxidation of the halogen (a) in the absence of solvent, (b) in a solvent which is itself the oxidant (e.g. AsFs) or (c) in a non-reactive solvent (e.g. SO2). Some examples are listed below ... [Pg.842]

The competitive method employed for determining relative rates of substitution in homolytic phenylation cannot be applied for methylation because of the high reactivity of the primary reaction products toward free methyl radicals. Szwarc and his co-workers, however, developed a technique for measuring the relative rates of addition of methyl radicals to aromatic and heteroaromatic systems. - In the decomposition of acetyl peroxide in isooctane the most important reaction is the formation of methane by the abstraction of hydrogen atoms from the solvent by methyl radicals. When an aromatic compound is added to this system it competes with the solvent for methyl radicals, Eqs, (28) and (29). Reaction (28) results in a decrease in the amount... [Pg.161]


See other pages where Solvent reactivation technique is mentioned: [Pg.168]    [Pg.225]    [Pg.156]    [Pg.3]    [Pg.282]    [Pg.2553]    [Pg.670]    [Pg.673]    [Pg.662]    [Pg.665]    [Pg.713]    [Pg.716]    [Pg.124]    [Pg.170]    [Pg.649]    [Pg.652]    [Pg.156]    [Pg.744]    [Pg.747]    [Pg.719]    [Pg.722]    [Pg.708]    [Pg.711]    [Pg.26]    [Pg.742]    [Pg.745]    [Pg.662]    [Pg.665]    [Pg.181]    [Pg.352]    [Pg.498]    [Pg.519]    [Pg.169]    [Pg.277]    [Pg.259]    [Pg.112]    [Pg.839]   
See also in sourсe #XX -- [ Pg.129 , Pg.340 ]




SEARCH



Reactive solvents

Solvent techniques

Solvents reactivity

© 2024 chempedia.info