Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solvent effect focusing

Solvent effect focusing which occurs for higher-volatihty analytes. The solvent effects, depicted schematically in Figure 9.9, occur in two ways (a) the solvent vapor re-condenses rapidly when it reached a column cooled below its boiling point, resulting in a rapid, several-hundredfold reduction in volume, trapping analyte molecules in this flooded zone and (b) as the carrier gas flows over the flooded zone, it evaporates from the inlet end. [Pg.480]

In the sections below a brief overview of static solvent influences is given in A3.6.2, while in A3.6.3 the focus is on the effect of transport phenomena on reaction rates, i.e. diflfiision control and the influence of friction on intramolecular motion. In A3.6.4 some special topics are addressed that involve the superposition of static and transport contributions as well as some aspects of dynamic solvent effects that seem relevant to understanding the solvent influence on reaction rate coefficients observed in homologous solvent series and compressed solution. More comprehensive accounts of dynamics of condensed-phase reactions can be found in chapter A3.8. chapter A3.13. chapter B3.3. chapter C3.1. chapter C3.2 and chapter C3.5. [Pg.832]

The grouping of solvents into classes with common characteristics can be useful in focusing attention on features that may play a role in experimental solvent effects. Reichardt s - review of classification schemes is thorough. [Pg.397]

Including the solvent around a protein can be done, in principle, by the explicit approach of Chapter 3. Such a treatment, however, is very expensive, in view of the large number of water molecules needed to properly solvate the entire protein. Thus we will consider below two alternative approaches which allow one to effectively represent the solvent. The discussion of these models will be focused on electrostatic aspects where the importance of solvent effects is easily demonstrated. [Pg.123]

More recent work has focused on understanding the mechanism or mechanisms of selectivity. Some of these studies have been performed on well-characterized catalysts about which particle size information is available. Still others have been performed on single crystals. So conclusions may be reached about the effects on chemoselectivity of planes, edges, and corners that are related to particle size (structure sensitivity). A number of these studies, mostly on Pt, are summarized in Table 2.6. Since these studies have usually been performed in the vapor phase, information about solvent effects and their possible influence on chemoselectivity is unavailable. [Pg.59]

In this review we discuss the theoretical frame which may serve as a basis for a DFT formulation of solvent effects for atoms and molecules embedded in polar liquid environments. The emphasis is focused on the calculation of solvation energies in the context of the RF model, including the derivation of an effective energy functional for the atomic and molecular systems coupled to an electrostatic external field. [Pg.83]

The second chapter, by Jan Sandstrom, deals with stereochemical features of push-pull ethylenes. The focus is on rotational barriers, which span a large range of values. The ease of twisting is partly a matter of electron delocalization and partly a matter of steric and solvent effects. Electronic structure and such related items as dipole moments and photoelectron spectra for these systems are discussed. The chapter also deals with the structure and chiroptical properties of twisted ethylenes that do not have push-pull effects, such as frans-cyclooctene. [Pg.334]

Another focus of this chapter is the alkynol cycloisomerization mediated by Group 6 metal complexes. Experimental and theoretical studies showed that both exo- and endo- cycloisomerization are feasible. The cycloisomerization involves not only alkyne-to-vinylidene tautomerization but alo proton transfer steps. Therefore, the theoretical studies demonstrated that the solvent effect played a crucial role in determining the regioselectivity of cycloisomerization products. [2 + 2] cycloaddition of the metal vinylidene C=C bond in a ruthenium complex with the C=C bond of a vinyl group, together with the implication in metathesis reactions, was discussed. In addition, [2 + 2] cycloaddition of titanocene vinylidene with different unsaturated molecules was also briefly discussed. [Pg.153]

The goal of theory and computer simulation is to predict S i) and relate it to solvent and solute properties. In order to accomplish this, it is necessary to determine how the presence of the solvent affects the So —> Si electronic transition energy. The usual assmnption is that the chromophore undergoes a Franck-Condon transition, i.e., that the transition occurs essentially instantaneously on the time scale of nuclear motions. The time-evolution of the fluorescence Stokes shift is then due the solvent effects on the vertical energy gap between the So and Si solute states. In most models for SD, the time-evolution of the solute electronic stracture in response to the changes in solvent environment is not taken into accoimt and one focuses on the portion AE of the energy gap due to nuclear coordinates. [Pg.210]

The grouping of solvents into classes with common characteristics can be useful in focusing attention on features that may play a role in experimental solvent effects. Reichardt s review of classification schemes is thorough (Reichardt, 1988). It is remarkable that solvent classification correlates strongly with the chemist s intuition. The new direction of the science demands that new properties be incorporated into mundane practices. These will include safety properties and environmental properties, as well as chemical properties. [Pg.92]

In this section, solvent effects are considered for each of the above reactions, focusing on the standard redox potentials and the reaction mechanisms. It should be noted that the potentials here are based on a scale common to all solvents, so... [Pg.89]

Transient absorption experiments have shown that all of the major DNA and RNA nucleosides have fluorescence lifetimes of less than one picosecond [2—4], and that covalently modified bases [5], and even individual tautomers [6], differ dramatically in their excited-state dynamics. Femtosecond fluorescence up-conversion studies have also shown that the lowest singlet excited states of monomeric bases, nucleosides, and nucleotides decay by ultrafast internal conversion [7-9]. As discussed elsewhere [2], solvent effects on the fluorescence lifetimes are quite modest, and no evidence has been found to date to support excited-state proton transfer as a decay mechanism. These observations have focused attention on the possibility of internal conversion via one or more conical intersections. Recently, computational studies have succeeded in locating conical intersections on the excited state potential energy surfaces of several isolated nucleobases [10-12]. [Pg.463]

Splitless injection involves keeping the injector split vent closed during the time the sample is deposited on the column, after which the vent is reopened and the inlet purged with carrier gas. In splitless injection, the inlet temperature is elevated with respect to the column temperature. The sample is focused at the head of the column with the aid of the solvent effect. The solvent effect is the vaporization of sample and solvent matrix in the injection port, followed by trapping of the analyte in the condensing solvent at the head of the column. This trapping of the analyte serves to refocus the sample bandwidth and is only achieved after proper selection of the solvent, column and injector temperatures. Splitless injection techniques have been reviewed in References 29 and 30. [Pg.48]

In our discussion the usual Born-Oppenheimer (BO) approximation will be employed. This means that we assume a standard partition of the effective Hamiltonian into an electronic and a nuclear part, as well as the factorization of the solute wavefunction into an electronic and a nuclear component. As will be clear soon, the corresponding electronic problem is the main source of specificities of QM continuum models, due to the nonlinearity of the effective electronic Hamiltonian of the solute. The QM nuclear problem, whose solution gives information on solvent effects on the nuclear structure (geometry) and properties, has less specific aspects, with respect the case of the isolated molecules. In fact, once the proper potential energy surfaces are obtained from the solution of the electronic problem, such a problem can be solved using the standard methods and approximations (mechanical harmonicity, and anharmonicity of various order) used for isolated molecules. The QM nuclear problem is mainly connected with the vibrational properties of the nuclei and the corresponding spectroscopic observables, and it will be considered in more detail in the contributions in the book dedicated to the vibrational spectroscopies (IR/Raman). This contribution will be focused on the QM electronic problem. [Pg.82]

In this contribution we have presented some specific aspects of the quantum mechanical modelling of electronic transitions in solvated systems. In particular, attention has been focused on the ASC continuum models as in the last years they have become the most popular approach to include solvent effects in QM studies of absorption and emission phenomena. The main issues concerning these kinds of calculations, namely nonequilibrium effects and state-specific versus linear response formulations, have been presented and discussed within the most recent developments of modern continuum models. [Pg.121]

Theoretical bases of continuum models including their mathematical formulation and numerical implementation have already been discussed in the previous chapter of this book. We have therefore restricted our review to the environment effects on the NMR observables, without going into the theory of continuum models. This contribution is divided into five sections. After the Introduction, the definitions of the NMR parameters are recalled in the second section. The third section is focused on methodological aspects of the calculation of the NMR parameters in continuum models. The fourth section reviews calculations of the solvent effects on the nuclear magnetic shielding constants and spin-spin coupling constants by means of continuum models, and the final section presents a survey on the perspectives of this field. [Pg.126]

The structure of this contribution is as follows. After a brief summary of the theory of optical activity, with particular emphasis on the computational challenges induced by the presence of the magnetic dipole operator, we will focus on theoretical studies of solvent effects on these properties, which to a large extent has been done using various polarizable dielectric continuum models. Our purpose is not to give an exhaustive review of all theoretical studies of solvent effects on natural optical activity but rather to focus on a few representative studies in order to illustrate the importance of the solvent effects and the accuracy that can be expected from different theoretical methods. [Pg.207]

At a more detailed level, we note that the solvent effects on the optical rotation have the same origins as solvent effects on the energy itself, as described in detail in other contributions to this book. Most other studies of solvent effects on natural optical activity have focused on the electrostatic contributions. These contributions can be partitioned into direct effects arising from the influence of the dielectric environment on the electronic density of the solute, and into indirect effects arising from the relaxation of the nuclear structure in the solvent. For conformationally flexible molecules, we may also consider a third possible solvent effect due to the changes in the conformational equilibria when going from the gas phase to solution. [Pg.211]

The main advantage of the MFA is that it permits one to dramatically reduce the computational requisites associated with the study of solvent effects. This allows one to focus attention on the solute description, and it consequently becomes possible to use calculation levels similar to those usually employed in the study of systems and processes in the gas phase. Furthermore, in the case of ASEP/MD this high level description of the solute is combined with a detailed description of the solvent structure obtained from molecular dynamics simulations. Thanks to these features ASEP/MD [8] enables the study of systems and processes where it is necessary to have simultaneously a good description of the electron correlation of the solute and the explicit consideration of specific solute-solvent interactions, such as for VIS-UV spectra [9] or chemical reactivity [10]. [Pg.580]


See other pages where Solvent effect focusing is mentioned: [Pg.18]    [Pg.219]    [Pg.395]    [Pg.85]    [Pg.83]    [Pg.835]    [Pg.241]    [Pg.269]    [Pg.389]    [Pg.388]    [Pg.15]    [Pg.149]    [Pg.327]    [Pg.107]    [Pg.197]    [Pg.657]    [Pg.5]    [Pg.160]    [Pg.242]    [Pg.541]    [Pg.395]    [Pg.117]    [Pg.161]    [Pg.493]    [Pg.555]    [Pg.631]   
See also in sourсe #XX -- [ Pg.480 ]




SEARCH



Focusing effect

© 2024 chempedia.info