Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Excited-state potential energy surfaces

Figure 4.1 shows a schematic of relative energy in theF( P) + H2(j = 0) reaction. Due to the spin-orbit interaction, the fluorine atom degenerate ground electronic state F( P) is split into two states the spin-orbit ground state F( P3/2> and the spin-orbit excited state F ( Pj/2), respectively. As shown in Fig. 4.1, on the three adiabatic potential energy surfaces, electronic states l A and l A"... [Pg.76]

CN] —> I + CN. Wavepacket moves and spreads in time, with its centre evolving about 5 A in 200 fs. Wavepacket dynamics refers to motion on the intennediate potential energy surface B. Reprinted from Williams S O and lime D G 1988 J. Phys. Chem.. 92 6648. (c) Calculated FTS signal (total fluorescence from state C) as a fiinction of the time delay between the first excitation pulse (A B) and the second excitation pulse (B -> C). Reprinted from Williams S O and Imre D G, as above. [Pg.243]

Figure Al.6.20. (Left) Level scheme and nomenclature used in (a) single time-delay CARS, (b) Two-time delay CARS ((TD) CARS). The wavepacket is excited by cOp, then transferred back to the ground state by with Raman shift oij. Its evolution is then monitored by tOp (after [44])- (Right) Relevant potential energy surfaces for the iodine molecule. The creation of the wavepacket in the excited state is done by oip. The transfer to the final state is shown by the dashed arrows according to the state one wants to populate (after [44]). Figure Al.6.20. (Left) Level scheme and nomenclature used in (a) single time-delay CARS, (b) Two-time delay CARS ((TD) CARS). The wavepacket is excited by cOp, then transferred back to the ground state by with Raman shift oij. Its evolution is then monitored by tOp (after [44])- (Right) Relevant potential energy surfaces for the iodine molecule. The creation of the wavepacket in the excited state is done by oip. The transfer to the final state is shown by the dashed arrows according to the state one wants to populate (after [44]).
Figure Al.6.26. Stereoscopic view of ground- and excited-state potential energy surfaces for a model collinear ABC system with the masses of HHD. The ground-state surface has a minimum, corresponding to the stable ABC molecule. This minimum is separated by saddle points from two distmct exit chaimels, one leading to AB + C the other to A + BC. The object is to use optical excitation and stimulated emission between the two surfaces to steer the wavepacket selectively out of one of the exit chaimels (reprinted from [54]). Figure Al.6.26. Stereoscopic view of ground- and excited-state potential energy surfaces for a model collinear ABC system with the masses of HHD. The ground-state surface has a minimum, corresponding to the stable ABC molecule. This minimum is separated by saddle points from two distmct exit chaimels, one leading to AB + C the other to A + BC. The object is to use optical excitation and stimulated emission between the two surfaces to steer the wavepacket selectively out of one of the exit chaimels (reprinted from [54]).
Figure Al.6.27. Equipotential contour plots of (a) the excited- and (b), (c) ground-state potential energy surfaces. (Here a hamionic excited state is used because that is the way the first calculations were perfomied.) (a) The classical trajectory that originates from rest on the ground-state surface makes a vertical transition to the excited state, and subsequently undergoes Lissajous motion, which is shown superimposed, (b) Assuming a vertical transition down at time (position and momentum conserved) the trajectory continues to evolve on the ground-state surface and exits from chaimel 1. (c) If the transition down is at time 2 the classical trajectory exits from chaimel 2 (reprinted from [52]). Figure Al.6.27. Equipotential contour plots of (a) the excited- and (b), (c) ground-state potential energy surfaces. (Here a hamionic excited state is used because that is the way the first calculations were perfomied.) (a) The classical trajectory that originates from rest on the ground-state surface makes a vertical transition to the excited state, and subsequently undergoes Lissajous motion, which is shown superimposed, (b) Assuming a vertical transition down at time (position and momentum conserved) the trajectory continues to evolve on the ground-state surface and exits from chaimel 1. (c) If the transition down is at time 2 the classical trajectory exits from chaimel 2 (reprinted from [52]).
There are significant differences between tliese two types of reactions as far as how they are treated experimentally and theoretically. Photodissociation typically involves excitation to an excited electronic state, whereas bimolecular reactions often occur on the ground-state potential energy surface for a reaction. In addition, the initial conditions are very different. In bimolecular collisions one has no control over the reactant orbital angular momentum (impact parameter), whereas m photodissociation one can start with cold molecules with total angular momentum 0. Nonetheless, many theoretical constructs and experimental methods can be applied to both types of reactions, and from the point of view of this chapter their similarities are more important than their differences. [Pg.870]

Tunable visible and ultraviolet lasers were available well before tunable infrared and far-infrared lasers. There are many complexes that contain monomers with visible and near-UV spectra. The earliest experiments to give detailed dynamical infonnation on complexes were in fact those of Smalley et al [22], who observed laser-induced fluorescence (LIF) spectra of He-l2 complexes. They excited the complex in the I2 B <—A band, and were able to produce excited-state complexes containing 5-state I2 in a wide range of vibrational states. From line w idths and dispersed fluorescence spectra, they were able to study the rates and pathways of dissociation. Such work was subsequently extended to many other systems, including the rare gas-Cl2 systems, and has given quite detailed infonnation on potential energy surfaces [231. [Pg.2447]

The vibrationally excited states of H2-OH have enough energy to decay either to H2 and OH or to cross the barrier to reaction. Time-dependent experiments have been carried out to monitor the non-reactive decay (to H2 + OH), which occurs on a timescale of microseconds for H2-OH but nanoseconds for D2-OH [52, 58]. Analogous experiments have also been carried out for complexes in which the H2 vibration is excited [59]. The reactive decay products have not yet been detected, but it is probably only a matter of time. Even if it proves impossible for H2-OH, there are plenty of other pre-reactive complexes that can be produced. There is little doubt that the spectroscopy of such species will be a rich source of infonnation on reactive potential energy surfaces in the fairly near future. [Pg.2451]

Static properties of some molecules ([193,277-280]). More recently, pairs of ci s have been studied [281,282] in greater detail. These studies arose originally in connection with a ci between the l A and 2 A states found earlier in computed potential energy surfaces for C2H in symmetry [278]. Similar ci s appear between the potential surfaces of the two lowest excited states A2 and B2 iit H2S or of 82 and A in Al—H2 within C2v symmetry [283]. A further, closely spaced pair of ci s has also been found between the 3 A and 4 A states of the molecule C2H. Here the separation between the twins varies with the assumed C—C separation, and they can be brought into coincidence at some separation [282]. [Pg.130]

Figure 4. Relaxed triangular plot [68] of the Li3 first-excited state potential energy surface using hyperspherical coordinates. Contours are given by the expression E (eV) =-0.56-1-0.045(n — 1) with n = 2,3,. The dissociation limit indicated by the dense contouring implies... Figure 4. Relaxed triangular plot [68] of the Li3 first-excited state potential energy surface using hyperspherical coordinates. Contours are given by the expression E (eV) =-0.56-1-0.045(n — 1) with n = 2,3,. The dissociation limit indicated by the dense contouring implies...
Fig. 13.5. Schematic representation of the potential energy surfaces of the ground state (S ,) and the excited state (.5,) of a nonadiabatic photoreaction of reactant R. Depending on the way the classical trajectories enter the conical intersection region, different ground-state valleys, which lead to products P and can be reached. Reproduced from Angew. Chem. Int. Ed. Engl. 34 549 (1995) by permission of Wiley-VCH. Fig. 13.5. Schematic representation of the potential energy surfaces of the ground state (S ,) and the excited state (.5,) of a nonadiabatic photoreaction of reactant R. Depending on the way the classical trajectories enter the conical intersection region, different ground-state valleys, which lead to products P and can be reached. Reproduced from Angew. Chem. Int. Ed. Engl. 34 549 (1995) by permission of Wiley-VCH.
Fig. 13.11. A schematic drawing of the potential energy surfaces for the photochemical reactions of stilbene. Approximate branching ratios and quantum yields for the important processes are indicated. In this figure, the ground- and excited-state barrier heights are drawn to scale representing the best available values, as are the relative energies of the ground states of Z- and E -stilbene 4a,4b-dihydrophenanthrene (DHP). [Reproduced from R. J. Sension, S. T. Repinec, A. Z. Szarka, and R. M. Hochstrasser, J. Chem. Phys. 98 6291 (1993) by permission of the American Institute of Physics.]... Fig. 13.11. A schematic drawing of the potential energy surfaces for the photochemical reactions of stilbene. Approximate branching ratios and quantum yields for the important processes are indicated. In this figure, the ground- and excited-state barrier heights are drawn to scale representing the best available values, as are the relative energies of the ground states of Z- and E -stilbene 4a,4b-dihydrophenanthrene (DHP). [Reproduced from R. J. Sension, S. T. Repinec, A. Z. Szarka, and R. M. Hochstrasser, J. Chem. Phys. 98 6291 (1993) by permission of the American Institute of Physics.]...
The photochemical behavior of butadienes has been closely studied. When these compounds are exposed to light, they move from the ground state to an excited state. This excited state eventually returns to one of the ground state conformations via a process that includes a radiationless decay (i.e., without emitting a photon) from the excited state potential energy surface back to the ground state potential energy surface. [Pg.232]

The search for a conical intersection is also successful. The predicted structure is at the left. The predicted energies of the two states—the ground state and the first excited state—differ by about 0.00014 Hartrees, confirming that they are degenerate at these points on the two potential energy surfaces. ... [Pg.235]

Computations can be carried out on systems in the gas phase or in solution, and in their ground state or in an excited state. Gaussian can serve as a powerful tool for exploring areas of chemical interest like substituent effects, reaction mechanisms, potential energy surfaces, and excitation energies. [Pg.313]


See other pages where Excited-state potential energy surfaces is mentioned: [Pg.354]    [Pg.244]    [Pg.245]    [Pg.246]    [Pg.248]    [Pg.250]    [Pg.261]    [Pg.269]    [Pg.877]    [Pg.880]    [Pg.1062]    [Pg.1063]    [Pg.1162]    [Pg.2304]    [Pg.2445]    [Pg.2447]    [Pg.2997]    [Pg.81]    [Pg.107]    [Pg.125]    [Pg.220]    [Pg.560]    [Pg.575]    [Pg.608]    [Pg.770]    [Pg.372]    [Pg.167]    [Pg.342]    [Pg.16]    [Pg.262]    [Pg.262]    [Pg.262]    [Pg.400]    [Pg.232]    [Pg.612]    [Pg.182]   
See also in sourсe #XX -- [ Pg.490 , Pg.500 , Pg.511 , Pg.539 , Pg.540 , Pg.541 , Pg.542 , Pg.543 ]




SEARCH



Excitation energy

Excited state energy

Excited state potential surface

Excited state surface

Excited states energy surfaces

Potential Energy Surfaces for Ground and Excited States

Potential energy states

Surface states

Wavepacket excited-state potential-energy surface

© 2024 chempedia.info