Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solutions equivalent conductance

With these equations we may define the ionic and solution equivalent conductivities Ai, Ap, and A. [Pg.206]

The conductivity of a solution containing 1 gram equivalent of solute when measured between two large parallel electrodes at a distance of 1 cm apart is called the equivalent conductivity A. [Pg.108]

In the case of small ions, Hittorf transference cell measurements may be combined with conductivity data to give the mobility of the ion, that is, the velocity per unit potential gradient in solution, or its equivalent conductance. Alternatively, these may be measured more directly by the moving boundary method. [Pg.183]

Table 8.35 Equivalent Conductivities of Electrolytes in Aqueous Solutions at... Table 8.35 Equivalent Conductivities of Electrolytes in Aqueous Solutions at...
The specific heat of aqueous solutions of hydrogen chloride decreases with acid concentration (Fig. 4). The electrical conductivity of aqueous hydrogen chloride increases with temperature. Equivalent conductivity of these solutions ate summarized in Table 8. Other physicochemical data related to... [Pg.441]

Critical Micelle Concentration. The rate at which the properties of surfactant solutions vary with concentration changes at the concentration where micelle formation starts. Surface and interfacial tension, equivalent conductance (50), dye solubilization (51), iodine solubilization (52), and refractive index (53) are properties commonly used as the basis for methods of CMC determination. [Pg.238]

The term equivalent conductance A is often used to describe the conductivity of electrolytes. It is defined as the conductivity of a cube of solution having a cross-section of one square centimeter and containing one equivalent of dissolved electrolyte. [Pg.509]

It has already been mentioned that in an aqueous solution of KC1 at a concentration of 3.20 X 10-6 mole per liter, the equivalent conductivity was found to have a value, 149.37, that differed appreciably from the value obtained by the extrapolation of a series of measurements to infinite dilution. We may say that, even in this very dilute solution, each ion, in the absence of an electric field, does not execute a random motion that is independent of the presence of other ions the random motion of any ion is somewhat influenced by the forces of attraction and repulsion of other ions that happen to be in its vicinity. At the same time, this distortion of the random motion affects not only the electrical conductivity but also the rate of diffusion of the solute, if this were measured in a solution of this concentration. [Pg.42]

It is not usual to talk about the resistance of electrolytes, but rather about their conductance. The specific conductance (K) of an electrolyte is defined as the reciprocal of the resistance of a part of the electrolyte, 1 cm in length and 1 cm2 in cross-sectional area. It depends only on the ions present and, therefore it varies with their concentration. To take the effect of concentration into account, a function called the equivalent conductance, A, is defined. This is more commonly (and conveniently) used than the specific conductance to compare quantitatively the conductivities of electrolytes. The equivalent conductance A is the conductance of that volume of the electrolyte which contains one gram equivalent of the ions taking part in the electrolysis and which is held between parallel electrodes 1 cm apart (units ohm-1 cm4). If V cubic centimeters is the volume of the solution containing one gram equivalent, then the value of L will be 1 cm and the value of A will be V square centimeters, so that... [Pg.608]

In aqueous solutions, concentrations are sometimes expressed in terms of normality (gram equivalents per liter), so that if C is concentration, then V = 103/C and a = 103 K/C. To calculate C, it is necessary to know the formula of the solute in solution. For example, a one molar solution of Fe2(S04)3 would contain 6 1CT3 equivalents cm-3. It is now clear as to why A is preferred. The derivation provided herein clearly brings out the fact that A is the measure of the electrolytic conductance of the ions which make up 1 g-equiv. of electrolyte of a particular concentration - thereby setting conductance measurements on a common basis. Sometimes the molar conductance am is preferred to the equivalent conductance this is the conductance of that volume of the electrolyte which contains one gram molecule (mole) of the ions taking part in the electrolysis and which is held between parallel electrodes 1 cm apart. [Pg.608]

As in the case of solutions, the specific conductance, K, the equivalent conductance, a, and the molar conductance, am, are also distinguished for molten electrolytes. These are defined in the same manner as done for the case of solutions of electrolytes. It may, however, be pointed out that molten salts generally have much higher conductivities than equivalent aqueous systems. [Pg.608]

If the resistance of any other electrolyte is found by measurement to be Rx when using the same conductance cell, then the specific conductance of this electrolyte is L1/ . Thus, on multiplying the value of specific conductance so obtained by V, the volume of solution in milliliters containing one gram equivalent weight of the electrolyte under investigation, the equivalent conductance A is calculated. [Pg.611]

From results of conductance measurements it has been found that although the conductance of an electrolyte becomes progressively smaller with decreasing concentration, the values of equivalent conductance increase as the concentration decreases or the solution dilution increases until a maximum limiting value is finally obtained. The limiting value of the equivalent conductance which is attained with decreasing concentration or increasing solution dilution is termed the equivalent conductance at infinite dilution, and is denoted Aq-... [Pg.613]

In the relationship shown above, A and B are constants depending on temperature, viscosity of the solvent, and dielectric constant of the solvent, C is the concentration expressed in gram equivalents per liter, and Ac represents the equivalent conductance of the solution. A0 is the equivalent conductance at infinite dilution - that is, at C = 0, when the ions are infinitely apart from one another and there exists no interionic attraction, a represents the degree of dissociation of the electrolyte. For example, with the compound MN... [Pg.614]

The electrical conduction in a solution, which is expressed in terms of the electric charge passing across a certain section of the solution per second, depends on (i) the number of ions in the solution (ii) the charge on each ion (which is a multiple of the electronic charge) and (iii) the velocity of the ions under the applied field. When equivalent conductances are considered at infinite dilution, the effects of the first and second factors become equal for all solutions. However, the velocities of the ions, which depend on their size and the viscosity of the solution, may be different. For each ion, the ionic conductance has a constant value at a fixed temperature and is the same no matter of which electrolytes it constitutes a part. It is expressed in ohnT1 cm-2 and is directly proportional to the mobilities or speeds of the ions. If for a uni-univalent electrolyte the ionic mobilities of the cations and anions are denoted, respectively, by U+ and U, the following relationships hold ... [Pg.617]

Salts such as silver chloride or lead sulfate which are ordinarily called insoluble do have a definite value of solubility in water. This value can be determined from conductance measurements of their saturated solutions. Since a very small amount of solute is present it must be completely dissociated into ions even in a saturated solution so that the equivalent conductivity, KV, is equal to the equivalent conductivity at infinite dilution which according to Kohlrausch s law is the sum of ionic conductances or ionic mobilities (ionic conductances are often referred to as ionic mobilities on account of the dependence of ionic conductances on the velocities at which ions migrate under the influence of an applied emf) ... [Pg.621]

In fact, the conductivity k can be thought of as the conductance of 1 cm3 of the electrolyte solution. Now, let us suppose that 1 cm3 would contain 1 g-equiv. of electrolyte and let us call its conductivity the equivalent conductivity, A, then the relation... [Pg.29]

Arrhenius postulated in 1887 that an appreciable fraction of electrolyte in water dissociates to free ions, which are responsible for the electrical conductance of its aqueous solution. Later Kohlrausch plotted the equivalent conductivities of an electrolyte at a constant temperature against the square root of its concentration he found a slow linear increase of A with increasing dilution for so-called strong electrolytes (salts), but a tangential increase for weak electrolytes (weak acids and bases). Hence the equivalent conductivity of an electrolyte reaches a limiting value at infinite dilution, defined as... [Pg.29]

CATION TRANSFERENCE NUMBERS AND EQUIVALENT CONDUCTIVITIES (fi cm2 equiv.-1) IN AQUEOUS SOLUTIONS AT 25° C... [Pg.33]

Conductometric titrations. Van Meurs and Dahmen25-30,31 showed that these titrations are theoretically of great value in understanding the ionics in non-aqueous solutions (see pp. 250-251) in practice they are of limited application compared with the more selective potentiometric titrations, as a consequence of the low mobilities and the mutually less different equivalent conductivities of the ions in the media concerned. The latter statement is illustrated by Table 4.7108, giving the equivalent conductivities at infinite dilution at 25° C of the H ion and of the other ions (see also Table 2.2 for aqueous solutions). However, in practice conductometric titrations can still be useful, e.g., (i) when a Lewis acid-base titration does not foresee a well defined potential jump at an indicator electrode, or (ii) when precipitations on the indicator electrode hamper its potentiometric functioning. [Pg.301]

Fig. 2.8 The Wien effect shown by the percentage increase of equivalent conductivity in dependence on the electric field in Li3Fe(CN)6 solutions in water. Concentrations in mmol dm-3 are indicated at each curve... [Pg.110]

The equivalent conductivity of an electrolyte solution decreases with increasing concentration due to interionic attractions described mainly by the electrophoretic and relaxation field effects 2-35>. This decrease is more pronounced if in addition the electrolyte is associated. Association of ionic salts by ion-pairing is commonly observed in solvents of low or moderate dielectric constant. The immediate goals in the analysis of conductance data are the. determination of the limiting equivalent conductance at infinite dilution, A0, and the evaluation of the association constant, KA, if ion-pairing occurs. [Pg.12]

In solution of pure HMPA,DMSO, or DMF, (CH3)3SnI is found to be completely ionized as 1 1 electrolyte. This observation leads to the conclusion that the equivalent conductivities are a measure of the relative ionizing power of the donor. Thus we can say that the relative ionizing power of a donor solvent increases with an encrease in the donicity of the solvent molecules. [Pg.77]

This is possible if the equivalent conductivity is proportional to the square root of the concentration Cq, i.e. if the Debye-Hiickel-Onsager law is obeyed. It is known that this square-root law is also obeyed for non-aqueous solvents as a good approximation, as long as the dielectric constant of the solvent is not less than e = 30. Figure 19 shows the equivalent conductivities as a function of Vm for three examples. If one bears in mind that, because of experimental difficulties, the accuracy of measurements in aqueous solutions is not attained, then the square root law is obeyed to a good approximation. [Pg.248]


See other pages where Solutions equivalent conductance is mentioned: [Pg.24]    [Pg.24]    [Pg.140]    [Pg.599]    [Pg.40]    [Pg.40]    [Pg.41]    [Pg.79]    [Pg.222]    [Pg.735]    [Pg.616]    [Pg.630]    [Pg.827]    [Pg.39]    [Pg.157]    [Pg.265]    [Pg.6]    [Pg.57]    [Pg.248]    [Pg.250]    [Pg.253]   
See also in sourсe #XX -- [ Pg.320 , Pg.322 ]




SEARCH



Conductive solution

Conductivity equivalent

Equivalent Conductivity of Electrolytes Aqueous Solution

Equivalent conductance

Solution conductance

Solution conductivity

© 2024 chempedia.info