Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solutions Debye-Hiickel theory

Petrus (Peter) Josephus Wilhelmus Debye (1884-1966). .. was a Dutch physicist and physical chemist, who worked in the fields of quantum physics, X-ray analysis, microwave spectroscopy, and electrochemistry. Colloid science benefits from his contribution to X-ray and light scattering (in particular for aggregates— Eq. (4.39)— and concentrated suspensions—Eq. (2.24)), his work on electrolyte solutions (Debye-Hiickel theory), as well as his remarks to electrophoresis and his research on polymers. He was awarded the Nobel Prize in Chemistry in 1936 for his work on molecular structure through his investigations on dipole moments and the diffraction of X-rays and electrons in gases . [Pg.297]

Debye-Hiickel theory The activity coefficient of an electrolyte depends markedly upon concentration. Jn dilute solutions, due to the Coulombic forces of attraction and repulsion, the ions tend to surround themselves with an atmosphere of oppositely charged ions. Debye and Hiickel showed that it was possible to explain the abnormal activity coefficients at least for very dilute solutions of electrolytes. [Pg.125]

Incomplete Dissociation into Free Ions. As is well known, there are many substances which behave as a strong electrolyte when dissolved in one solvent, but as a weak electrolyte when dissolved in another solvent. In any solvent the Debye-IIiickel-Onsager theory predicts how the ions of a solute should behave in an applied electric field, if the solute is completely dissociated into free ions. When we wish to survey the electrical conductivity of those solutes which (in certain solvents) behave as weak electrolytes, we have to ask, in each case, the question posed in Sec. 20 in this solution is it true that, at any moment, every ion responds to the applied electric field in the way predicted by the Debye-Hiickel theory, or does a certain fraction of the solute fail to respond to the field in this way In cases where it is true that, at any moment, a certain fraction of the solute fails to contribute to the conductivity, we have to ask the further question is this failure due to the presence of short-range forces of attraction, or can it be due merely to the presence of strong electrostatic forces ... [Pg.63]

In Fig. 69 we have been considering a pair of solute particles in pure solvent. We shall postpone further discussion of this question until later. In the meantime we shall review the Coulomb forces in very dilute ionic solutions as they are treated in the Debye-Hiickel theory. [Pg.251]

It is important to realise that whilst complete dissociation occurs with strong electrolytes in aqueous solution, this does not mean that the effective concentrations of the ions are identical with their molar concentrations in any solution of the electrolyte if this were the case the variation of the osmotic properties of the solution with dilution could not be accounted for. The variation of colligative, e.g. osmotic, properties with dilution is ascribed to changes in the activity of the ions these are dependent upon the electrical forces between the ions. Expressions for the variations of the activity or of related quantities, applicable to dilute solutions, have also been deduced by the Debye-Hiickel theory. Further consideration of the concept of activity follows in Section 2.5. [Pg.23]

It can be shown on the basis of the Debye-Hiickel theory that for aqueous solutions at room temperature ... [Pg.24]

For more concentrated solutions (/° 5 >0.3) an additional term BI is added to the equation B is an empirical constant. For a more detailed treatment of the Debye-Hiickel theory a textbook of physical chemistry should be consulted.1... [Pg.24]

Calculation of the Thermodynamic Properties of Strong Electrolyte Solutes The Debye-Hiickel Theory... [Pg.333]

Experience shows that solutions of other electrolytes behave in a manner similar to the examples we have used. The conclusion we reach is that the Debye-Hiickel equation, even in the extended form, can be applied only at very low concentrations, especially for multivalent electrolytes. However, the behavior of the Debye-Hiickel equation as we approach the limit of zero ionic strength appears to give the correct limiting law behavior. As we have said earlier, one of the most useful applications of Debye-Hiickel theory is to... [Pg.343]

Make a graph of <7, // , and TS against a, and compare the values. E7.5 Use the Debye-Hiickel theory to calculate the activity at 298.15 K of CaCl2 in the following aqueous solutions ... [Pg.376]

We have problems when we attempt to repeat this calculation in 0.010/77 KC1 and 0.010m KNO, since 7- is a function of the total concentration of ions, and, as we saw in Chapter 7, at m = 0.010 mol-kg-1, 7 differs significantly from one. Debye-Hiickel theory provides a method for calculating 7 for dilute solutions. [Pg.473]

Chapters 7 to 9 apply the thermodynamic relationships to mixtures, to phase equilibria, and to chemical equilibrium. In Chapter 7, both nonelectrolyte and electrolyte solutions are described, including the properties of ideal mixtures. The Debye-Hiickel theory is developed and applied to the electrolyte solutions. Thermal properties and osmotic pressure are also described. In Chapter 8, the principles of phase equilibria of pure substances and of mixtures are presented. The phase rule, Clapeyron equation, and phase diagrams are used extensively in the description of representative systems. Chapter 9 uses thermodynamics to describe chemical equilibrium. The equilibrium constant and its relationship to pressure, temperature, and activity is developed, as are the basic equations that apply to electrochemical cells. Examples are given that demonstrate the use of thermodynamics in predicting equilibrium conditions and cell voltages. [Pg.686]

Improvements upon the Debye-Hiickel Theory of Ionic Solutions Andersen, H. C. 11... [Pg.617]

Equation (7.44) is known as the third approximation of the Debye-Hiickel theory. Numerous attempts have been made to interpret it theoretically, hi these attempts, either individual simplifying assumptions that had been made in deriving the equations are dropped or additional factors are included. The inclusion of ionic solvation proved to be the most important point. In concentrated solutions, solvation leads to binding of a significant fraction of the solvent molecules. Hence, certain parameters may change when solvation is taken into account since solvation diminishes the number of free solvent molecules (not bonded to the ions). The influence of these and some other factors was analyzed in 1948 by Robert A. Robinson and Robert H. Stokes. [Pg.122]

The hole correction of the electrostatic energy is a nonlocal mechanism just like the excluded volume effect in the GvdW theory of simple fluids. We shall now consider the charge density around a hard sphere ion in an electrolyte solution still represented in the symmetrical primitive model. In order to account for this fact in the simplest way we shall assume that the charge density p,(r) around an ion of type i maintains its simple exponential form as obtained in the usual Debye-Hiickel theory, i.e.,... [Pg.110]

In the foregoing derivations we have assumed that the true pH value would be invariant with temperature, which in fact is incorrect (cf., eqn. 2.58 of the Debye-Hiickel theory of the ion activity coefficient). Therefore, this contribution of the solution to the temperature dependence has still to be taken into account. Doing so by differentiating ET with respect to T at a variable pH we obtain in AE/dT the additional term (2.3026RT/F) dpH/dT, which if P (cf., eqn. 2.98) is neglected and when AE/dT = 0 for the whole system yields... [Pg.93]

Another arena for the application of stochastic frictional approaches is the influence of ionic atmosphere relaxation on the rates of reactions in electrolyte solutions [19], To gain perspective on this, we first recall the early and often quoted triumph of TST for the prediction of salt effects, in connection with Debye-Hiickel theory, for reaction rates In kTST varies linearly with the square root of the solution ionic strength I, with a sign depending on whether the charge distribution of the transition state is stabilized or destabilized by the ionic atmosphere compared to the reactants. [Pg.251]

Although the theory of solutions has been widely used in formulating problems of defects in solids the problems encountered differ in certain respects. The most obvious point is that defects are restricted to discrete lattice sites, whereas the ions in a solution can occupy any position in the fluid. Sometimes no allowance is made for this fact. For example, it has not been demonstrated that at very low concentrations, in the absence of ion-pair effects, the activity coefficients are identical with those of the Debye-Hiickel theory. It can be plausibly argued51 that at sufficiently low concentrations the effect of discreteness is likely to be negligible, but clearly in developing a theory for any but the lowest concentrations the effect should be investigated. A second point... [Pg.44]

Equations (87)-(89) apply in aqueous solutions of two electrolytes in which the interaction potentials are conformal. For example, the assumptions utilized in the extensions of the Debye-Hiickel theory (e.g. water is considered as a continuous dielectric medium of dielectric constant D, that the cation-anion repulsive potential is that of hard spheres, and that all the... [Pg.107]

The case of activity coefficients in solutions is easily but tediously implemented since well-constrained expressions exist, like those produced by the Debye-Hiickel theory for dilute solutions or the Pitzer expressions for concentrated solutions (brines). The interested reader may refer to Michard (1989) for a recent and still reasonably simple account. However simple to handle, activity coefficients introduce analytically cumbersome expressions incompatible with the size of a textbook. Real gas theory demands even more complicated developments. [Pg.319]

Edwards et al. (6) made the assumption that was equal to 4>pure a at the same pressure and temperature. Further theyused the virial equation, truncated after the second term to estimate pUre a These assumptions are satisfactory when the total pressure is low or when the mole fraction of the solute in the vapor phase is near unity. For the water, the assumption was made that <(>w, , aw and the exponential term were unity. These assumptions are valid when the solution consists mostly of water and the total pressure is low. The activity coefficient of the electrolyte was calculated using the extended Debye-Hiickel theory ... [Pg.52]

The approach that we will follow is known as the Debye-Hiickel theory. The activity laws discussed in the following are derived from a knowledge of electrostatic considerations, and apply to ions in solution that have an energy distribution that follows the well-known Maxwell-Boltzmann law. Strong electrostatic forces affect the behaviour and the mean positions of all ions in solution. [Pg.45]

Raji Heyrovska [18] has developed a model based on incomplete dissociation, Bjermm s theory of ion-pair formation, and hydration numbers that she has found fits the data for NaCl solutions from infinite dilution to saturation, as well as several other strong electrolytes. She describes the use of activity coefficients and extensions of the Debye-Hiickel theory as best-fitting parameters rather than as explaining the significance of the observed results. ... [Pg.464]

Stokes-Robinson Modification of Debye-Hiickel Theory Effect of Ion-Solvent Interaction. Debye-Hiickel theory explains the activity and activity coefficient data on the basis of ion-ion interaction for dilute solution. According to Eqs. (5.29) and... [Pg.74]

Experimenters would do well to avoid any unnecessary changes in the ionic composition of reaction samples within a series of experiments. If possible, chose a standard set of reaction conditions, because one cannot readily correct data from one set of experimental conditions in any reliable manner that reveals the reactivity under a different set of conditions. Maintenance of ionic strength and solvent composition is desirable, and correction to constant ionic strength often effectively minimizes or ehminates electrostatic effects. Even so, remember that Debye-Hiickel theory only applies to reasonably dilute electrolyte solutions. Another important fact is that ion effects and solvent effects on the activity coefficients of polar transition states may be more significant than more modest effects on reactants. [Pg.134]

Recall from transition state theory that the rate of a reaction depends on kg (the catalytic rate constant at infinite dilution in the given solvent), the activity of the reactants, and the activity of the activated complex. If one or more of the reactants is a charged species, then the activity coefficient of any ion can be expressed in terms of the Debye-Htickel theory. The latter treats the behavior of dilute solutions of ions in terms of electrical charge, the distance of closest approach of another ion, ionic strength, absolute temperature, as well as other constants that are characteristic of each solvent. If any other factor alters the effect of ionic strength on reaction rates, then one must look beyond Debye-Hiickel theory for an appropriate treatment. [Pg.398]

The activity coefficient of the anion A in dilute solutions can be calculated from Debye-Hiickel theory as follows ... [Pg.63]

The above equation is known as the linearized Poisson-Boltzmann equation since the assumption of low potentials made in reaching this result from Equation (29) has allowed us make the right-hand side of the equation linear in p. This assumption is also made in the Debye-Hiickel theory and prompts us to call this model the Debye-Hiickel approximation. Equation (33) has an explicit solution. Since potential is the quantity of special interest in Equation (33), let us evaluate the potential at 25°C for a monovalent ion that satisfies the condition e p = kBT ... [Pg.510]

If there is a strong acid that completely dissociates, we prepare a solution of the acid of known concentration and use it to calibrate the glass electrode. The pH of the solution is calculated by estimating ym(H+) using the Debye-Hiickel theory. [Pg.180]


See other pages where Solutions Debye-Hiickel theory is mentioned: [Pg.220]    [Pg.221]    [Pg.89]    [Pg.255]    [Pg.217]    [Pg.359]    [Pg.380]    [Pg.40]    [Pg.218]    [Pg.7]    [Pg.2]    [Pg.719]    [Pg.125]    [Pg.463]    [Pg.464]    [Pg.65]    [Pg.158]    [Pg.303]    [Pg.138]    [Pg.54]    [Pg.179]   
See also in sourсe #XX -- [ Pg.246 , Pg.247 , Pg.248 , Pg.249 , Pg.250 , Pg.646 ]




SEARCH



Debye solutions

Debye theory

Debye-Hiickel

Debye-Hiickel solution

Debye-Hiickel theory

Hiickel

Hiickel theory

Solution theory

© 2024 chempedia.info