Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solution cyclohexanone

In many cases separation of the aluminum salts and cyclohexanone cannot be carried out as in the above experiment. In these cases the aluminum salts can generally be removed by washing with dilute hydrochloric acid or with aqueous Rochelle salt (sodium potassium tartrate) solution. Cyclohexanone and cyclohexanol can be conveniently removed by steam distillation as described in the following experiment. [Pg.236]

Chemicals and Standard Solutions. Cyclohexanone, cyclohexanol, 1,3,5-trichlorobenzene, 1,2,4-trichlorobenzene, phenol, 4-methylphenol, 4-chloro-phenol, 1,2,3,4-tetrahydroisoquinoline, 1-chlorohexane, 1-chlorododecane, and 1-chlorooctadecane were obtained from Aldrich. Acetone, tetrahydrofuran, ethyl acetate, toluene, dimethyl sulfoxide, and methanol were obtained from J. T. Baker. Distilled-in-glass isooctane, methylene chloride, ethyl ether, and pentane were obtained from Burdick and Jackson. Analytical standard kits from Analabs provided methyl ethyl ketone, isopropyl alcohol, ethanol, methyl isobutyl ketone, tetrachloroethylene, dodecane, dimethylformamide, 1,2-dichlorobenzene, 1-octanol, nitrobenzene, 2,4-dichlorophenol, and 2,5-dichlorophenol. All chemicals obtained from the vendors were of the highest purity available and were used without further purification. High-purity water... [Pg.356]

Photolysis of cyclohexanone also gives rise to a small amount of carbon monoxide, the quantum yield for the process at 3130 A. being 0.02. Photolysis at shorter wavelengths gives rise to high boiling products which are formed by a reaction between the ketone and the substrate. In cyclohexanol solution, cyclohexanone pinacol is formed (40). [Pg.108]

Three mixtures of CO-PNNA were blended together for analysis of lithographic performance. Compositions of 20, 33, and 50% CO by weight were blended by dissolution in THF to form a 13% (total solids) solution. Cyclohexanone was added to the blend to form a 7% solution to impart proper viscosity and volatility.for casting films. In the case of PNNA with N - 950 x 10, CO was dissolved in hot chlorobenzene and tnen mixed with PNNA (also in chlorobenzene). Solvent choice was a matter of convenience. [Pg.151]

The Beckmann rearrangement in superheated and SCH2O was performed at temperatures of 250-400 °C at fixed densities of 0.35 and 0.50 g/mL. The experiments were conducted using a batch reactor system. The reactor vessel was made from a piece of SUS 316 tubing, providing an internal volume of 10 cm A predetermined amount of reactant solution (cyclohexanone-oxime of 0.44 mmol and water of 0.20 or 0.28 mol) was loaded into the reactor in N2 atmosphere. The reactor vessel was immersed and vigorously shaken in a fluidized molten salt bath. The heating time to raise the reactor temperature from 20 °C to 400 °C was within 30 s and the temperature was controlled within 2°C. After a preselected reaction time of 3 min, the reactor was removed from the bath, and then quenched in a water bath. [Pg.274]

Fractional solution Cyclohexanone/ethylene glycol Column extraction 981,983... [Pg.1831]

Required Cyclohexanone, 20 g. hydroxylamine hydrochloride, 17 g. anhydrous sodium carbonate, 13 g. concentrated sulphuric acid, 50 ml. 25% aqueous potassium hydroxide solution, approx. 200 ml. chloroform, 120 ml. [Pg.228]

Cyclohexanone oxime. Add 20 g. (21 ml.) of cyclohexanone to a solution of 17 g. of hydroxylamine hydrochloride in 40 ml. of water, and cool the mixture in ice-water. Add a solution of 13 g. of anhydrous sodium carbonate in 40 ml. of water slowly to the mixture, stirring the latter with a 100° thermometer, and maintaining the temperature of the mixture at 20-25° meanwhile. The oxime rapidly separates. Stir the complete mixture at intervals, and after 10 minutes filter the oxime at the pump, drain thoroughly and dry it in a (vacuum) desiccator. Yield of crude oxime, 20 g. Recrystallise from petroleum (b.p. 100-120 ) and dry over paraffin wax (p. 19). Yield of pure oxime, 16 g., m.p. 88°. [Pg.228]

Dissolve 8 8 g. (9 0 ml.) of cyclohexanone in 50 ml. of glacial acetic acid, add 8 ml. of phenylhydrazine, and boil the solution under reflux for 5 minutes. Cool the solution, when the tetrahydrocarbazole will crystallise out. Filter at the pump, drain well, and recrystallise either from aqueous ethanol or (better) from aqueous acetic acid. The recrystallisation should be performed rapidly, for the tetrahydrocarbazole undergoes atmO" spheric oxidation in hot solutions after recrystallisation, the compound should be dried in a vacuum desiccator and not in an oven. Repeated recrystallisation should be avoided. The tetrahydrocarbazole, after thorough drying, is obtained as colourless crystals, m.p. 118° yield of recrystallised material, 11 g. [Pg.295]

Pour the reaction mixture into a 1-litre round-bottomed flaak, add 250 ml. of water, fit a still head and a condenser for downward distillation (Fig. II, 13, 3, but without the thermometer). Distil the mixture until about 125 ml. of distillate (two layers) have been collected. Saturate with salt (about 30 g. are required), and separate the upper layer of cj/cZohexanone extract the aqueous layer with 25-30 ml. of ether and combine the ether extract with the cycZohexanone layer. Dry with about 6 g. of anhydrous sodium or magnesium sulphate, filter the solution into a distilling flask of suitable size to which a condenser has previously been attached. Distil oflF the ether from a water bath—a beaker containing warm water is satisfactory. Distil the residual liquid from an air bath or a wire gauze, and collect the cyclohexanone at 153-156°. The yield is 16 g. [Pg.337]

Dissolve 2 5 g. of hydroxylamine hydrochloride and 4 g. of crystallised sodium acetate in 10 ml. of water in a small flask or in a test-tube. Warm the solution to about 40° and add 2 5 g. of cyclohexanone. Stopper the vessel securely with a cork and shake vigorously for a few minutes the oxime soon separates as a crystalline solid. Cool in ice, filter the crystals at the pump, and wash with a little cold water. RecrystaUise from light petroleum, b.p. 60-80°, and dry the crystals upon filter paper in the air. The yield of pure cycZohexanone oxime, m.p. 90°, is 2 -5 g. [Pg.343]

In a 1-litre three-necked flask equipped with a thermometer, a mechanical stirrer and a dropping funnel, place 49 g. of redistilled cyclohexanone, 125 g. of p-tolylsulphonylmethylnitrosamide, 150 ml. of 95 per cent, ethanol and 10 ml. of water. The nitrosamide is largely undissolved. Adjust the height of the stirrer so that only the upper part of the solution is stirred and the precipitate moves slightly place the thermometer so that the bulb is in the liquid. Cool the mixture to about 0° in an ice - salt... [Pg.946]

A solution of 0.21 mol of butyllithium in about 140 ml of hexane (note 1) was cooled below -40°C and 90 ml of dry THF ivere run in. Subsequently a cold (< -20 C) solution of 0.25 nol of propyne in 20 ml of dry THF was added with cooling below -20°C and a white precipitate was formed. A solution of 0.10 mol of anhydrous (note 2) lithium bromide in 30 ml of THF was added, followed by 0.20 mol of freshly distilled cyclopentanone or cyclohexanone, all at -30°C. The precipitate had disappeared almost completely after 20 min. The cooling bath was then removed and when the temperature had reached 0°C, the mixture was hydrolyzed by addition of 100 ml of a solution of 20 g of NHi,Cl in water. After shaking and separation of the layers four extractions with diethyl ether were carried out. The extracts were dried over magnesium sulfate and the solvents removed by evaporation in a water--pump vacuum. Careful distillation of the remaining liquids afforded the following... [Pg.75]

The di(hydroxyaLkyl) peroxide (2) from cyclohexanone is a soHd which is produced commercially. The di(hydroxyaLkyl) peroxide (2) from 2,4-pentanedione (11, n = 1 X = OH) is a water-soluble soHd which is also produced commercially (see Table 5). Both these peroxides are used for curing cobalt-promoted unsaturated polyester resins. Because these peroxides are susceptible to promoted decomposition with cobalt, they must exist in solution as equihbrium mixtures with hydroperoxide stmctures (122,149). [Pg.116]

A Methylamino)phenol. This derivative, also named 4-hydroxy-/V-methy1ani1ine (19), forms needles from benzene which are slightly soluble in ethanol andinsoluble in diethyl ether. Industrial synthesis involves decarboxylation of A/-(4-hydroxyphenyl)glycine [122-87-2] at elevated temperature in such solvents as chlorobenzene—cyclohexanone (184,185). It also can be prepared by the methylation of 4-aminophenol, or from methylamiae [74-89-5] by heating with 4-chlorophenol [106-48-9] and copper sulfate at 135°C in aqueous solution, or with hydroquinone [123-31 -9] 2l. 200—250°C in alcohoHc solution (186). [Pg.315]

Fig. 10. Viscosity vs shear rate for solutions of a styrene—butadiene—styrene block copolymer (42). A represents cyclohexanone, where c = 0.248 g/cm (9-xylene, where c = 0.246 g/cm C, toluene, where c = 0.248 g/cm. Courtesy of the Society of Plastics Engineers, Inc. Fig. 10. Viscosity vs shear rate for solutions of a styrene—butadiene—styrene block copolymer (42). A represents cyclohexanone, where c = 0.248 g/cm (9-xylene, where c = 0.246 g/cm C, toluene, where c = 0.248 g/cm. Courtesy of the Society of Plastics Engineers, Inc.
Allied-Signal Process. Cyclohexanone [108-94-1] is produced in 98% yield at 95% conversion by liquid-phase catal57tic hydrogenation of phenol. Hydroxylamine sulfate is produced in aqueous solution by the conventional Raschig process, wherein NO from the catalytic air oxidation of ammonia is absorbed in ammonium carbonate solution as ammonium nitrite (eq. 1). The latter is reduced with sulfur dioxide to hydroxylamine disulfonate (eq. 2), which is hydrolyzed to acidic hydroxylamine sulfate solution (eq. 3). [Pg.429]

Cyclohexanone oxime is converted quantitatively to caprolactam by Beckmann rearrangement in the presence of oleum, which is of sufficient strength to consume the several percent water in the molten oxime. The reaction mass is neutralized with aqueous ammonia to a cmde caprolactam layer and a saturated solution of ammonium sulfate. Approximately 1.5 kg of the total 4.4 kg ammonium sulfate per kilogram of caprolactam is produced in this step. Purification is by multistage vacuum crystallization from aqueous solution in neatly quantitative yield. [Pg.429]

Cyalohexylideneaaetonit ri-le. A 1-L three-necked, round-bottomed flask equipped with a reflux condenser, mechanical stirrer and addition funnel, is charged with potassium hydroxide (855 pellets, 33.0 g, 0.5 mol. Note 1) and acetonitrile (250 ml. Notes 2 and 3). The mixture is brought to reflux and a solution of cyclohexanone (49 g, 0.5 mol. Note 4) in acetonitrile (100 mL) is added over a period of 0.5-1.0 hr. Heating at reflux is continued for 2 hr (Note 5) after the addition is complete and the hot solution is then poured onto cracked ice (600 gl. The resulting binary mixture is separated... [Pg.179]

Freshly distilled cyclohexanone (10.8 g., 0.11 mole) is now added dropwise. The solution becomes colorless and a white precipitate separates. The mixture is heated under reflux overnight, allowed to cool to room temperature, and the prcciiiitate... [Pg.66]

These mechanistic interpretations can also be applied to the hydrogenation of cyclohexanones. In acid, the carbonium ion (19) is formed and adsorbed on the catalyst from the least hindered side. Hydride ion transfer from the catalyst gives the axial alcohol (20). " In base, the enolate anion (21) is also adsorbed from the least hindered side. Hydride ion transfer from the catalyst followed by protonation from the solution gives the equatorial alcohol (22). [Pg.116]

N-Cyclohex-l-enylpyrrolidine (9 g 0 06 mol) was dissolved in pentane with A -ethyldiisopropylamine (7.8 g 0.06 mol). Perfluorohexyl iodide (13.4 g, 0.03 mol) IS added to the solution. Aprecipitate of A-ethyldiisopropylamine hydroiodide IS formed instantly After 3 h, the precipitate is filtered off, and the solution is evaporated The crude liquid is hydrolyzed with 6 mL of 40% sulfuric acid The mixture is stirred for 3 h and extracted with ether. The ether layer is neutralized with aqueous sodium hydrogen carbonate, washed with water, and dried over magnesium sulfate. The solvent is evaporated, and the residue is distilled. A second distillation with a spinning-band column yields 7 9 g (63%) of pure 2-(perfluoro-hexyl)cyclohexanone (bp, 71 -73 °C at 0 4 mm of Hg). [Pg.489]

A dry 500-ml round-bottomed three-necked flask fitted with a stirrer, internal thermometer, and a pressure-equalized dropping funnel is placed under nitrogen and the flask is charged with 0.148 mole of freshly distilled cyclohexanone and 0.148 mole of freshly distilled ethyl chloroacetate. A solution of 6.0 g of potassium and 125 mL of dry terr-butyl alcohol is introduced into the dropping funnel, and the system is exhausted and... [Pg.20]

Reaction of hydroxylamine-0-sulfonic acid with cyclohexanone in alkaline solution can be shown to give pentamethyleneoxazirane (16). Compound 16 is an isomer of cyclohexanone oxime. It decomposes even at room temperature and thus cannot be prepared in a pure state. [Pg.89]

A -Chloromethylamine attacks ketones in alkaline solution with formation of oxaziranes with cyclohexanone, compound 17 is produced in 50% yield. The reaction with aldehydes with zV-chloromethyl-amine yields predominantly acid amides. However, oxaziranes are also produced here as by-products. From benzaldehyde and A -chloro-methylamine, 2-raethyl-3-phenyloxazirane (15) was obtained in 10% yield. [Pg.90]

On mild heating of its ethanolic solution, rearrangement occurs with the shift of a benzoyl group. The structure of the cyclohexanone... [Pg.115]


See other pages where Solution cyclohexanone is mentioned: [Pg.10]    [Pg.51]    [Pg.936]    [Pg.10]    [Pg.51]    [Pg.936]    [Pg.337]    [Pg.341]    [Pg.343]    [Pg.864]    [Pg.901]    [Pg.907]    [Pg.975]    [Pg.231]    [Pg.430]    [Pg.431]    [Pg.412]    [Pg.427]    [Pg.107]    [Pg.178]    [Pg.319]    [Pg.380]    [Pg.402]    [Pg.236]    [Pg.237]    [Pg.12]   
See also in sourсe #XX -- [ Pg.271 ]




SEARCH



Reactions of Semicarbazide with Cyclohexanone and 2-Furaldehyde in Phosphate Buffer Solution

© 2024 chempedia.info