Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solutes quantitative analysis

Photodegradation of Disperse Red (DR) in Tween 80 micelle solution quantitative analysis of the change of chloride ion concentration colour during photodegradation... [Pg.160]

Traditionally, UV-Visible spectra have been obtained in solution. Quantitative analysis is obtained based on the Beer-Lambert law. For quantitative analysis by solution spectrophotometry the colorant must be completely dissolved and other components in the sample must not interfere with the determination. In addition, purified standards containing known amounts of the pigment being determined are required. Since HPOPs are highly insoluble, strong organic solvents or concentrated sulfuric acid are usually employed in order to effect complete dissolution of the pigment. [Pg.335]

Many additional refinements have been made, primarily to take into account more aspects of the microscopic solvent structure, within the framework of diffiision models of bimolecular chemical reactions that encompass also many-body and dynamic effects, such as, for example, treatments based on kinetic theory [35]. One should keep in mind, however, that in many cases die practical value of these advanced theoretical models for a quantitative analysis or prediction of reaction rate data in solution may be limited. [Pg.845]

Formation of acetaldehyde and metallic Pd by passing ethylene into an aqueous solution of PdCl2 was reported by Phillips in 1894 15] and used for the quantitative analysis of Pd(II)[16], The reaction was highlighted after the industrial process for acetaldehyde production from ethylene based on this reaetion had been developed[l,17,18]. The Wacker process (or reaction) involves the three unit reactions shown. The unique feature in the Wacker process is the invention of the in situ redox system of PdCl2-CuCl2. [Pg.22]

Second, the majority of analytical techniques, particularly those used for a quantitative analysis, require that the analyte be in solution. Solid samples, or at least the analytes in a solid sample, must be brought into solution. [Pg.198]

Inorganic Analysis Acid-base titrimetry is a standard method for the quantitative analysis of many inorganic acids and bases. Standard solutions of NaOH can be used in the analysis of inorganic acids such as H3PO4 or H3ASO4, whereas standard solutions of HCl can be used for the analysis of inorganic bases such as Na2C03. [Pg.300]

A quantitative analysis for NH3 in several household cleaning products is carried out by titrating with a standard solution of HGl. The titration s progress is followed thermometrically by monitoring the temperature of the titration mixture as a function of the volume of added titrant. Household cleaning products may contain other basic components, such as sodium citrate or sodium carbonate, that will also be titrated by HGl. By comparing titration curves for prepared samples of NH3 to titration curves for the samples, it is possible to determine that portion of the thermometric titration curve due to the neutralization of NH3. [Pg.358]

Quantitative Analysis of Mixtures The analysis of two or more components in the same sample is straightforward if there are regions in the sample s spectrum in which each component is the only absorbing species. In this case each component can be analyzed as if it were the only species in solution. Unfortunately, UV/Vis absorption bands are so broad that it frequently is impossible to find appropriate wavelengths at which each component of a mixture absorbs separately. Earlier we learned that Beer s law is additive (equation 10.6) thus, for a two-component mixture of X and Y, the mixture s absorbance, A, is... [Pg.400]

Minimizing Chemical Interferences The quantitative analysis of some elements is complicated by chemical interferences occurring during atomization. The two most common chemical interferences are the formation of nonvolatile compounds containing the analyte and ionization of the analyte. One example of a chemical interference due to the formation of nonvolatile compounds is observed when P04 or AP+ is added to solutions of Ca +. In one study, for example, adding 100 ppm AP+ to a solution of 5 ppm Ca + decreased the calcium ion s absorbance from 0.50 to 0.14, whereas adding 500 ppm POp to a similar solution of Ca + decreased the absorbance from 0.50 to 0.38. These interferences were attributed to the formation of refractory particles of Ca3(P04)2 and an Al-Ca-O oxide. [Pg.419]

Molecular fluorescence and, to a lesser extent, phosphorescence have been used for the direct or indirect quantitative analysis of analytes in a variety of matrices. A direct quantitative analysis is feasible when the analyte s quantum yield for fluorescence or phosphorescence is favorable. When the analyte is not fluorescent or phosphorescent or when the quantum yield for fluorescence or phosphorescence is unfavorable, an indirect analysis may be feasible. One approach to an indirect analysis is to react the analyte with a reagent, forming a product with fluorescent properties. Another approach is to measure a decrease in fluorescence when the analyte is added to a solution containing a fluorescent molecule. A decrease in fluorescence is observed when the reaction between the analyte and the fluorescent species enhances radiationless deactivation, or produces a nonfluorescent product. The application of fluorescence and phosphorescence to inorganic and organic analytes is considered in this section. [Pg.429]

Samples of analyte are dissolved in a suitable solvent and placed on the IR card. After the solvent evaporates, the sample s spectrum is obtained. Because the thickness of the PE or PTEE film is not uniform, the primary use for IR cards has been for qualitative analysis. Zhao and Malinowski showed how a quantitative analysis for polystyrene could be performed by adding an internal standard of KSCN to the sample. Polystyrene was monitored at 1494 cm- and KSCN at 2064 cm-. Standard solutions were prepared by placing weighed portions of polystyrene in a 10-mL volumetric flask and diluting to volume with a solution of 10 g/L KSCN in... [Pg.453]

Controlled-potential coulometry also can be applied to the quantitative analysis of organic compounds, although the number of applications is significantly less than that for inorganic analytes. One example is the six-electron reduction of a nitro group, -NO2, to a primary amine, -NH2, at a mercury electrode. Solutions of picric acid, for instance, can be analyzed by reducing to triaminophenol. [Pg.502]

Thus, the limiting current, is a linear function of the concentration of O in bulk solution, and a quantitative analysis is possible using any of the standardization methods discussed in Chapter 5. Equations similar to equation 11.35 can be developed for other forms of voltammetry, in which peak currents are related to the analyte s concentration in bulk solution. [Pg.514]

Amperometry is a voltammetric method in which a constant potential is applied to the electrode and the resulting current is measured. Amperometry is most often used in the construction of chemical sensors that, as with potentiometric sensors, are used for the quantitative analysis of single analytes. One important example, for instance, is the Clark O2 electrode, which responds to the concentration of dissolved O2 in solutions such as blood and water. [Pg.533]

A quantitative analysis for vitamin Bi was carried out using this procedure. When a solution of 100.0 ppm Bi and 100.0 ppm o-ethoxybenzamide was analyzed, the peak area for vitamin Bi was 71 % of that for the internal standard. The analysis of a 0.125-g vitamin B complex tablet gave a peak area for vitamin Bi that was 1.82 times as great as that for the internal standard. How many milligrams of vitamin Bi are in the tablet ... [Pg.608]

Eatty acids from commercial fats and oils, such as peanut oil, are extracted with methanolic NaOH and made volatile by derivatizing with a solution of methanol/BE3. Separations are carried out using a capillary 5% phenylmethyl silicone column with MS detection. By searching the associated spectral library students are able to identify the fatty acids present in their sample. Quantitative analysis is by external standards. [Pg.611]

The earliest examples of analytical methods based on chemical kinetics, which date from the late nineteenth century, took advantage of the catalytic activity of enzymes. Typically, the enzyme was added to a solution containing a suitable substrate, and the reaction between the two was monitored for a fixed time. The enzyme s activity was determined by measuring the amount of substrate that had reacted. Enzymes also were used in procedures for the quantitative analysis of hydrogen peroxide and carbohydrates. The application of catalytic reactions continued in the first half of the twentieth century, and developments included the use of nonenzymatic catalysts, noncatalytic reactions, and differences in reaction rates when analyzing samples with several analytes. [Pg.623]

Noncatalytic Reactions Chemical kinetic methods are not as common for the quantitative analysis of analytes in noncatalytic reactions. Because they lack the enhancement of reaction rate obtained when using a catalyst, noncatalytic methods generally are not used for the determination of analytes at low concentrations. Noncatalytic methods for analyzing inorganic analytes are usually based on a com-plexation reaction. One example was outlined in Example 13.4, in which the concentration of aluminum in serum was determined by the initial rate of formation of its complex with 2-hydroxy-1-naphthaldehyde p-methoxybenzoyl-hydrazone. ° The greatest number of noncatalytic methods, however, are for the quantitative analysis of organic analytes. For example, the insecticide methyl parathion has been determined by measuring its rate of hydrolysis in alkaline solutions. [Pg.638]

Chlorine and bromine add vigorously, giving, with proper control, high yields of 1,2-dihaloethyl ethers (224). In the presence of an alcohol, halogens add as hypohaUtes, which give 2-haloacetals (225,226). With methanol and iodine this is used as a method of quantitative analysis, titrating unconsumed iodine with standard thiosulfate solution (227). [Pg.115]

Quantitative Analysis of All llithium Initiator Solutions. Solutions of alkyUithium compounds frequentiy show turbidity associated with the formation of lithium alkoxides by oxidation reactions or lithium hydroxide by reaction with moisture. Although these species contribute to the total basicity of the solution as determined by simple acid titration, they do not react with allyhc and henzylic chlorides or ethylene dibromide rapidly in ether solvents. This difference is the basis for the double titration method of determining the amount of active carbon-bound lithium reagent in a given sample (55,56). Thus the amount of carbon-bound lithium is calculated from the difference between the total amount of base determined by acid titration and the amount of base remaining after the solution reacts with either benzyl chloride, allyl chloride, or ethylene dibromide. [Pg.239]

Quantitative Analysis. The total acidity of nitric acid solution may be deterrnined by conventional titration using phenolphthalein as the indicator. [Pg.46]

Quantitative Analysis. OxaUc acid is precipitated as calcium oxalate from a solution containing oxaUc acid, and the calcium oxalate obtained is then weighed. If there are no organic substances other than oxaUc acid present, oxaUc acid can be titrated quantitatively with potassium permanganate. [Pg.461]

Although the most sensitive line for cadmium in the arc or spark spectmm is at 228.8 nm, the line at 326.1 nm is more convenient to use for spectroscopic detection. The limit of detection at this wavelength amounts to 0.001% cadmium with ordinary techniques and 0.00001% using specialized methods. Determination in concentrations up to 10% is accompHshed by solubilization of the sample followed by atomic absorption measurement. The range can be extended to still higher cadmium levels provided that a relative error of 0.5% is acceptable. Another quantitative analysis method is by titration at pH 10 with a standard solution of ethylenediarninetetraacetic acid (EDTA) and Eriochrome Black T indicator. Zinc interferes and therefore must first be removed. [Pg.388]

The chromatogram is freed from mobile phase in a stream of warm air and immersed in the reagent solution for 1 s and then dried in a stream of cold air. Red to reddish-brown zones are formed on a colorless background. They often appear immediately but sometimes they only appear after some minutes their color intensity is completely developed after 30 min [1]. They can be employed for quantitative analysis. [Pg.217]

Detection and result The developed chromatogram was dried in a stream of cold air, immersed in the reagent solution for 1 s and heated to 80 °C for 20 — 30 min (until optimal color development occurred). Yellow to brown-colored zones were produced on a pale yellow-colored background these were suitable for quantitative analysis. The detection limits for cholesterol hRf 20 — 25) and coprostanol 25 — 30) were a few nanograms per chromatogram zone. [Pg.386]

Aqueous ceric solutions are widely used as oxidants in quantitative analysis they can be prepared by the oxidation of Ce ( cerous ) solutions with strong oxidizing agents such as peroxodisulfate, S20g ", or bismuthate, BiOg". Complexation and hydrolysis combine to render (Ce" +/Ce +) markedly dependent on anion and acid concentration. In relatively strong perchloric acid the aquo ion is present but in other acids coordination of the anion is likely. Also, if the pH is increased, hydrolysis to... [Pg.1244]

It is important to note that the solubility product relation applies with sufficient accuracy for purposes of quantitative analysis only to saturated solutions of slightly soluble electrolytes and with small additions of other salts. In the presence of moderate concentrations of salts, the ionic concentration, and therefore the ionic strength of the solution, will increase. This will, in general, lower the activity coefficients of both ions, and consequently the ionic concentrations (and therefore the solubility) must increase in order to maintain the solubility product constant. This effect, which is most marked when the added electrolyte does not possess an ion in common with the sparingly soluble salt, is termed the salt effect. [Pg.25]

The great importance of the solubility product concept lies in its bearing upon precipitation from solution, which is, of course, one of the important operations of quantitative analysis. The solubility product is the ultimate value which is attained by the ionic concentration product when equilibrium has been established between the solid phase of a difficultly soluble salt and the solution. If the experimental conditions are such that the ionic concentration product is different from the solubility product, then the system will attempt to adjust itself in such a manner that the ionic and solubility products are equal in value. Thus if, for a given electrolyte, the product of the concentrations of the ions in solution is arbitrarily made to exceed the solubility product, as for example by the addition of a salt with a common ion, the adjustment of the system to equilibrium results in precipitation of the solid salt, provided supersaturation conditions are excluded. If the ionic concentration product is less than the solubility product or can arbitrarily be made so, as (for example) by complex salt formation or by the formation of weak electrolytes, then a further quantity of solute can pass into solution until the solubility product is attained, or, if this is not possible, until all the solute has dissolved. [Pg.26]

The solubility of the precipitates encountered in quantitative analysis increases with rise of temperature. With some substances the influence of temperature is small, but with others it is quite appreciable. Thus the solubility of silver chloride at 10 and 100 °C is 1.72 and 21.1mgL 1 respectively, whilst that of barium sulphate at these two temperatures is 2.2 and 3.9 mg L 1 respectively. In many instances, the common ion effect reduces the solubility to so.small a value that the temperature effect, which is otherwise appreciable, becomes very small. Wherever possible it is advantageous to filter while the solution is hot the rate of filtration is increased, as is also the solubility of foreign substances, thus rendering their removal from the precipitate more complete. The double phosphates of ammonium with magnesium, manganese or zinc, as well as lead sulphate and silver chloride, are usually filtered at the laboratory temperature to avoid solubility losses. [Pg.30]

Buffer solutions find many applications in quantitative analysis, e.g. many precipitations are quantitative only under carefully controlled conditions of pH, as are also many compleximetric titrations numerous examples of their use will be found throughout the book. [Pg.49]

The stability of the reagent in acid solution, together with its ability to complex a wide range of metals, make it a very useful general extracting reagent, especially for heavy metals. The chief applications of APDC in quantitative analysis are as follows ... [Pg.171]

Solvent extraction is generally employed in analysis to separate a solute (or solutes) of interest from substances which interfere in the ultimate quantitative analysis of the material sometimes the interfering solutes are extracted selectively. Solvent extraction is also used to concentrate a species which in aqueous solution is too dilute to be analysed. [Pg.172]


See other pages where Solutes quantitative analysis is mentioned: [Pg.225]    [Pg.123]    [Pg.225]    [Pg.123]    [Pg.21]    [Pg.331]    [Pg.395]    [Pg.653]    [Pg.667]    [Pg.667]    [Pg.486]    [Pg.56]    [Pg.315]    [Pg.284]    [Pg.65]    [Pg.90]    [Pg.384]    [Pg.113]    [Pg.25]    [Pg.70]    [Pg.161]   
See also in sourсe #XX -- [ Pg.159 , Pg.160 , Pg.161 , Pg.162 ]




SEARCH



Solutions analysis

© 2024 chempedia.info