Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solids, ionization

B. Ionic solids ionize in water, increasing the effect of all colligative properties. [Pg.354]

E. Cadot, A. Dolbecq, and E. Secheresse, From Molecular Rings to the 3D-Solid Ionization ofthe Neutral... [Pg.71]

X-rays may be detected either photographically or with an ionization counter. They have great penetrating power which increases with their frequency, and owing to this are used to photograph the interior of many solid objects, notably the human body and in monitoring for faults in construction. [Pg.429]

While the v-a plots for ionized monolayers often show no distinguishing features, it is entirely possible for such to be present and, in fact, for actual phase transitions to be observed. This was the case for films of poly(4-vinylpyri-dinium) bromide at the air-aqueous electrolyte interface [118]. In addition, electrostatic interactions play a large role in the stabilization of solid-supported lipid monolayers [119] as well as in the interactions between bilayers [120]. [Pg.556]

Ion-exchange methods are based essentially on a reversible exchange of ions between an external liquid phase and an ionic solid phase. The solid phase consists of a polymeric matrix, insoluble, but permeable, which contains fixed charge groups and mobile counter ions of opposite charge. These counter ions can be exchanged for other ions in the external liquid phase. Enrichment of one or several of the components is obtained if selective exchange forces are operative. The method is limited to substances at least partially in ionized form. [Pg.1109]

To examine a sample by inductively coupled plasma mass spectrometry (ICP/MS) or inductively coupled plasma atomic-emission spectroscopy (ICP/AES) the sample must be transported into the flame of a plasma torch. Once in the flame, sample molecules are literally ripped apart to form ions of their constituent elements. These fragmentation and ionization processes are described in Chapters 6 and 14. To introduce samples into the center of the (plasma) flame, they must be transported there as gases, as finely dispersed droplets of a solution, or as fine particulate matter. The various methods of sample introduction are described here in three parts — A, B, and C Chapters 15, 16, and 17 — to cover gases, solutions (liquids), and solids. Some types of sample inlets are multipurpose and can be used with gases and liquids or with liquids and solids, but others have been designed specifically for only one kind of analysis. However, the principles governing the operation of inlet systems fall into a small number of categories. This chapter discusses specifically substances that are normally liquids at ambient temperatures. This sort of inlet is the commonest in analytical work. [Pg.103]

Until about the 1990s, visible light played little intrinsic part in the development of mainstream mass spectrometry for analysis, but, more recently, lasers have become very important as ionization and ablation sources, particularly for polar organic substances (matrix-assisted laser desorption ionization, MALDI) and intractable solids (isotope analysis), respectively. [Pg.119]

Modern commercial lasers can produce intense beams of monochromatic, coherent radiation. The whole of the UV/visible/IR spectral range is accessible by suitable choice of laser. In mass spectrometry, this light can be used to cause ablation, direct ionization, and indirect ionization (MALDI). Ablation (often together with a secondary ionization mode) and MALDI are particularly important for examining complex, intractable solids and large polar biomolecules, respectively. [Pg.136]

The term nebulizer is used generally as a description for any spraying device, such as the hair spray mentioned above. It is normally applied to any means of forming an aerosol spray in which a volume of liquid is broken into a mist of vapor and small droplets and possibly even solid matter. There is a variety of nebulizer designs for transporting a solution of analyte in droplet form to a plasma torch in ICP/MS and to the inlet/ionization sources used in electrospray and mass spectrometry (ES/MS) and atmospheric-pressure chemical ionization and mass spectrometry (APCI/MS). [Pg.138]

Solutions of solids may need to be converted into aerosols by pneumatic or sonic-spraying techniques. After solvent has evaporated from the aerosol droplets, the residual particulate solid matter can be ionized by a plasma torch. [Pg.280]

Some solid materials are very intractable to analysis by standard methods and cannot be easily vaporized or dissolved in common solvents. Glass, bone, dried paint, and archaeological samples are common examples. These materials would now be examined by laser ablation, a technique that produces an aerosol of particulate matter. The laser can be used in its defocused mode for surface profiling or in its focused mode for depth profiling. Interestingly, lasers can be used to vaporize even thermally labile materials through use of the matrix-assisted laser desorption ionization (MALDI) method variant. [Pg.280]

For solids, there is now a very wide range of inlet and ionization opportunities, so most types of solids can be examined, either neat or in solution. However, the inlet/ionization methods are often not simply interchangeable, even if they use the same mass analyzer. Thus a direct-insertion probe will normally be used with El or Cl (and desorption chemical ionization, DCl) methods of ionization. An LC is used with ES or APCI for solutions, and nebulizers can be used with plasma torches for other solutions. MALDI or laser ablation are used for direct analysis of solids. [Pg.280]

There are methods for vaporizing solids of low volatility by placing them on a thin wire, which is then raised to a high temperature within a fraction of a second (direct chemical ionization, DCI). This rapid heating allows some vaporization without decomposition, but with the development of later ionization methods, it is now rarely used. [Pg.283]

The previous discussion has centered on how to obtain as much molecular mass and chemical structure information as possible from a given sample. However, there are many uses of mass spectrometry where precise isotope ratios are needed and total molecular mass information is unimportant. For accurate measurement of isotope ratio, the sample can be vaporized and then directed into a plasma torch. The sample can be a gas or a solution that is vaporized to form an aerosol, or it can be a solid that is vaporized to an aerosol by laser ablation. Whatever method is used to vaporize the sample, it is then swept into the flame of a plasma torch. Operating at temperatures of about 5000 K and containing large numbers of gas ions and electrons, the plasma completely fragments all substances into ionized atoms within a few milliseconds. The ionized atoms are then passed into a mass analyzer for measurement of their atomic mass and abundance of isotopes. Even intractable substances such as glass, ceramics, rock, and bone can be examined directly by this technique. [Pg.284]

The ablated vapors constitute an aerosol that can be examined using a secondary ionization source. Thus, passing the aerosol into a plasma torch provides an excellent means of ionization, and by such methods isotope patterns or ratios are readily measurable from otherwise intractable materials such as bone or ceramics. If the sample examined is dissolved as a solid solution in a matrix, the rapid expansion of the matrix, often an organic acid, covolatilizes the entrained sample. Proton transfer from the matrix occurs to give protonated molecular ions of the sample. Normally thermally unstable, polar biomolecules such as proteins give good yields of protonated ions. This is the basis of matrix-assisted laser desorption ionization (MALDI). [Pg.399]

Desorption ionization (DI). General term to encompass the various procedures (e.g., secondary ion mass spectrometry, fast-atom bombardment, californium fission fragment desorption, thermal desorption) in which ions are generated directly from a solid or liquid sample by energy input. Experimental conditions must be clearly stated. [Pg.438]

Field desorption. The formation of ions in the gas phase from a material deposited on a solid surface (known as an emitter) that is placed in a high electrical field. Field desorption is an ambiguous term because it implies that the electric field desorbs a material as an ion from some kind of emitter on which the material is deposited. There is growing evidence that some of the ions formed are due to thermal ionization and some to field ionization of material... [Pg.438]

Laser ionization. Occurs when a sample is irradiated with a laser beam. In the irradiation of gaseous samples, ionization occurs via a single- or multiphoton process. In the case of solid samples, ionization occurs via a thermal process. [Pg.439]

Spark (source) ionization. Occurs when a solid sample is vaporized and partially ionized by an intermittent electric discharge. Further ionization occurs in the discharge when gaseous atoms and small molecular moieties interact with energetic electrons in the intermittent discharge. It is recommended that the word source be dropped from this term. [Pg.439]

Surface ionization. Takes place when an atom or molecule is ionized when it interacts with a solid surface. Ionization occurs only when the work function of the surface, the temperature of the surface, and the ionization energy of the atom or molecule have an appropriate relationship. [Pg.439]

Phofoelectron spectroscopy is a simple extension of the photoelectric effect involving the use of higher-energy incident photons and applied to the study not only of solid surfaces but also of samples in the gas phase. Equations (8.1) and (8.2) still apply buf, for gas-phase measuremenfs in particular, fhe work function is usually replaced by fhe ionization energy l so fhaf Equation (8.2) becomes... [Pg.289]

Figure 8.28 shows how the X-rays fall on the solid or liquid sample which then emits X-ray fluorescence in the region 0.2-20 A. The fluorescence is dispersed by a flat crystal, often of lithium fluoride, which acts as a diffraction grating (rather like the quartz crystal in the X-ray monochromator in Figure 8.3). The fluorescence may be detected by a scintillation counter, a semiconductor detector or a gas flow proportional detector in which the X-rays ionize a gas such as argon and the resulting ions are counted. Figure 8.28 shows how the X-rays fall on the solid or liquid sample which then emits X-ray fluorescence in the region 0.2-20 A. The fluorescence is dispersed by a flat crystal, often of lithium fluoride, which acts as a diffraction grating (rather like the quartz crystal in the X-ray monochromator in Figure 8.3). The fluorescence may be detected by a scintillation counter, a semiconductor detector or a gas flow proportional detector in which the X-rays ionize a gas such as argon and the resulting ions are counted.

See other pages where Solids, ionization is mentioned: [Pg.324]    [Pg.212]    [Pg.262]    [Pg.422]    [Pg.278]    [Pg.323]    [Pg.80]    [Pg.187]    [Pg.324]    [Pg.212]    [Pg.262]    [Pg.422]    [Pg.278]    [Pg.323]    [Pg.80]    [Pg.187]    [Pg.1324]    [Pg.1324]    [Pg.1331]    [Pg.1822]    [Pg.2479]    [Pg.7]    [Pg.59]    [Pg.97]    [Pg.105]    [Pg.115]    [Pg.135]    [Pg.135]    [Pg.136]    [Pg.283]    [Pg.290]    [Pg.4]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



© 2024 chempedia.info