Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium nitrite oxidation

A mixture of the nitrite with sodium thiocyanate explodes on heating [1], Preparation of a molten salt bath from 0.45 kg of potassium thiocyanate (reducant) and 1.35 kg of sodium nitrite (oxidant) led to a violent explosion on melting, which... [Pg.1775]

Phthalic acid Piperazine Platinum Nitric acid, sodium nitrite Oxidizers Acetone, arsenic, hydrazine, lithium, proxosulfuric acid, phosphorus, selenium, tellurium... [Pg.1480]

A mixture of the nitrite with sodium thiocyanate explodes on heating [1]. Preparation of a molten salt bath from 0.45 kg of potassium thiocyanate (reducant) and 1.35 kg of sodium nitrite (oxidant) led to a violent explosion on melting, which caused severe structural damage to the laboratory [2]. It was claimed that this could not have been foreseen from available information [2], but this was vigorously refuted [3,4]. Use of sand baths, rather than salt baths for laboratory heating purposes is to be preferred [5]. The relative lack of descriptive chemistry in modern curricula is cited as the major contributory factor to the general ignorance which led to the explosion [6],... [Pg.1858]

Both amyl nitrite and sodium nitrite oxidize the ferrous iron in hemoglobin, creating measurable levels of methemoglobin. Patients receiving sodium nitrite infusions require close require constant monitoring of blood pressure and close observation for cyanosis and shock, both manifestations of methemoglobinemia. [Pg.142]

H—N—N=N. It is prepared by the oxidation of hydrazine in strongly acid solution the oxidising agent used is usually nitrous acid (i.e. sodium nitrite is added to the acid solution of hydrazine) ... [Pg.224]

Too rapid heating produces explosive decomposition. The reaction between hydroxyammonium chloride, NHjOH. Cl , and sodium nitrite gives pure dinitrogen oxide ... [Pg.228]

It is advisable to add the sodium nitrite solution, particularly in preparations on a larger scale, through a separatory or dropping funnel with the tip of the stem extending well below the sui-face of the liquid tliis will prevent loss of nitrous acid by surface decomposition into oxides of nitrogen. [Pg.599]

Nitrosyl chloride (178), nitrosyl chloride—hydrogen fluoride (NOF -3HF, NOF -6HF) (179), nitrous acid—hydrogen fluoride solutions (180,181), or nitrogen trioxide (prepared in situ from nitric oxide and oxygen) (27) can be used in place of sodium nitrite in the dia2oti2ation step. [Pg.322]

The bath components for a nitrite—nitrate accelerated bath basic to this conversion coating process are (/) 2inc metal or 2inc oxide dissolved in acid (2) phosphate ions added as phosphoric acid (J) addition of an oxidant such as sodium nitrite and (4) addition of nitric acid. Other oxidants such as peroxide, chlorate, chlorate in combination with nitrate, or an organic nitro compound may also be used. [Pg.223]

Plutonium Purification. The aqueous feed for the second plutonium cycle is typically prepared by adding HNO and an excess of sodium nitrite, NaN02, to destroy the excess reductant and oxidize the Pu to the more extractable Pu . An alternative approach which reduces the amount of salt in the Hquid waste involves absorbing nitrogen tetroxide, N2O4, as a substitute for the NaN02 ... [Pg.206]

There are explosion hazards with phthahc anhydride, both as a dust or vapor in air and as a reactant. Table 11 presents explosion hazards resulting from phthahc anhydride dust or vapor (40,41). Preventative safeguards in handling sohd phthahc anhydride have been reported (15). Water, carbon dioxide, dry chemical, or foam may be used to extinguish the burning anhydride. Mixtures of phthahc anhydride with copper oxide, sodium nitrite, or nitric acid plus sulfuric acid above 80°C explode or react violently (39). [Pg.484]

Sodium nitrite has been synthesized by a number of chemical reactions involving the reduction of sodium nitrate [7631-99-4] NaNO. These include exposure to heat, light, and ionizing radiation (2), addition of lead metal to fused sodium nitrate at 400—450°C (2), reaction of the nitrate in the presence of sodium ferrate and nitric oxide at - 400° C (2), contacting molten sodium nitrate with hydrogen (7), and electrolytic reduction of sodium nitrate in a cell having a cation-exchange membrane, rhodium-plated titanium anode, and lead cathode (8). [Pg.199]

Industrial production of sodium nitrite is by absorption of nitrogen oxides (NO ) into aqueous sodium carbonate or sodium hydroxide. NO gases originate from catalytic air oxidation of anhydrous ammonia, a practice common to nitric acid plants ... [Pg.199]

The many industrial uses for sodium nitrite primarily are based on its oxidizing properties or its Hberation of nitrous acid in acidic solutions. [Pg.200]

Rubber Chemicals. Sodium nitrite is an important raw material in the manufacture of mbber processing chemicals. Accelerators, retarders, antioxidants (qv), and antiozonants (qv) are the types of compounds made using sodium nitrite. Accelerators, eg, thiuram [137-26-8J, greatly increase the rate of vulcaniza tion and lead to marked improvement in mbber quaUty. Retarders, on the other hand (eg, /V-nitrosodiphenylamine [156-10-5]) delay the onset of vulcanization but do not inhibit the subsequent process rate. Antioxidants and antiozonants, sometimes referred to as antidegradants, serve to slow the rate of oxidation by acting as chain stoppers, transfer agents, and peroxide decomposers. A commonly used antioxidant is A/,AT-disubstituted Nphenylenediamine which can employ sodium nitrite in its manufacture (see Rubber chemicals). [Pg.200]

The need for low levels of 3-isomer in 2-thiophenecarboxyhc acid [527-72-0] which is produced by oxidation of 2-acetylthiophene [88-15-3] and used in dmg appHcations, has been the driving force to find improved acylation catalysts. The most widely used oxidant is sodium hypochlorite, which produces a quantity of chloroform as by-product, a consequence that detracts from its simplicity. Separation of the phases and acidification of the aqueous phase precipitate the product which is filtered off. Alternative oxidants have included sodium nitrite in acid solution, which has some advantages, but, like the hypochlorite method, also involves very dilute solutions and low throughput volumes. [Pg.21]

Later, a completely different and more convenient synthesis of riboflavin and analogues was developed (34). It consists of the nitrosative cyclization of 6-(A/-D-ribityl-3,4-xyhdino)uracil (18), obtained from the condensation of A/-D-ribityl-3,4-xyhdine (11) and 6-chlorouracil (19), with excess sodium nitrite in acetic acid, or the cyclization of (18) with potassium nitrate in acetic in the presence of sulfuric acid, to give riboflavin-5-oxide (20) in high yield. Reduction with sodium dithionite gives (1). In another synthesis, 5-nitro-6-(A/-D-ribityl-3,4-xyhdino) uracil (21), prepared in situ from the condensation of 6-chloro-5-nitrouracil (22) with A/-D-ribityl-3,4-xyhdine (11), was hydrogenated over palladium on charcoal in acetic acid. The filtrate included 5-amino-6-(A/-D-ribityl-3,4-xyhdino)uracil (23) and was maintained at room temperature to precipitate (1) by autoxidation (35). These two pathways are suitable for the preparation of riboflavin analogues possessing several substituents (Fig. 4). [Pg.77]

V-Alkylpipera ines and PIP can react with nitrosating agents such as nitrogen oxides, nitrites or nitrous acid to form nitrosamine derivatives (61,62). Piper a2ine dihydrochloride [142-64-3] reacts with aqueous sodium nitrite and HCl to give the dinitrosamine that melts at 156—158°C (61). [Pg.44]

Amino-6-chloro-4-methyl- and 3-amino-6-chloro-5-methyl-pyridazine and 3-amino-6-methylpyridazin-4(l//)-one are transformed with sodium nitrite in the presence of acid into the corresponding oxo compounds. If concentrated hydrochloric acid is used, in some instances the corresponding chloro derivatives are obtained as side products. On the other hand, 3-, 4-, 5- and 6-aminopyridazine 1-oxides and derivatives are transformed into stable diazonium salts, which can easily be converted into the corresponding halo derivatives. In this way 3-, 4-, 5- and 6-bromopyridazine 1-oxides, 5-chloropyridazine 1-oxide, 3,4,5-trichloropyridazine 1-oxide and 6-chloropyridazine 1-oxide can be obtained. [Pg.35]

Sodium nitrite hy action of nitric oxide and oxygen on aqueous sodium carbonate... [Pg.706]


See other pages where Sodium nitrite oxidation is mentioned: [Pg.271]    [Pg.163]    [Pg.641]    [Pg.163]    [Pg.271]    [Pg.576]    [Pg.126]    [Pg.271]    [Pg.163]    [Pg.641]    [Pg.163]    [Pg.271]    [Pg.576]    [Pg.126]    [Pg.231]    [Pg.183]    [Pg.590]    [Pg.959]    [Pg.393]    [Pg.160]    [Pg.172]    [Pg.32]    [Pg.198]    [Pg.199]    [Pg.199]    [Pg.199]    [Pg.199]    [Pg.200]    [Pg.200]    [Pg.201]    [Pg.170]    [Pg.216]   


SEARCH



Nitrite oxidation

Sodium oxidation

Sodium oxide

© 2024 chempedia.info