Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction sodium hydride

Sodium cyanoborohydride. reductive ami nation with, 931 Sodium cyclamate, LP50 of, 26 Sodium hydride, reaction with alcohols, 605... [Pg.1315]

The sodium hydride reaction with water is pH limited and requires an additional reactant to force the reaction to completion. [Pg.135]

Sodium hydride Reactions of thioketones Enetrithiocarbonic acid esters... [Pg.440]

An alternative method for ascertaining the end of the reaction, which does not involve the removal of the cover, is to conduct the exit gas through an empty wash bottle (to eict as a trap in case of sucking back ) and then collect a sample in a test-tube over water. If an inflammable gas (hydrogen) is absent, the reaction may be considered complete. Under no circumstances should the reaction be stopped until all the sodium has completely reacted too early arrest of the reaction may result in the product containing sodium hydride, which appears to be partially responsible for the explosive properties of the impure substance ... [Pg.196]

The condensation of aldehydes and ketones with succinic esters in the presence of sodium ethoxide is known as the Stobbe condensation. The reaction with sodium ethoxide is comparatively slow and a httlo reduction of the ketonic compound to the carbinol usually occurs a shorter reaction time and a better yield is generally obtained with the more powerful condensing agent potassium ieri.-butoxide or with sodium hydride. Thus benzophenone condenses with diethyl succinate in the presence of potassium [Pg.919]

The formation of the above anions ("enolate type) depend on equilibria between the carbon compounds, the base, and the solvent. To ensure a substantial concentration of the anionic synthons in solution the pA" of both the conjugated acid of the base and of the solvent must be higher than the pAT -value of the carbon compound. Alkali hydroxides in water (p/T, 16), alkoxides in the corresponding alcohols (pAT, 20), sodium amide in liquid ammonia (pATj 35), dimsyl sodium in dimethyl sulfoxide (pAT, = 35), sodium hydride, lithium amides, or lithium alkyls in ether or hydrocarbon solvents (pAT, > 40) are common combinations used in synthesis. Sometimes the bases (e.g. methoxides, amides, lithium alkyls) react as nucleophiles, in other words they do not abstract a proton, but their anion undergoes addition and substitution reactions with the carbon compound. If such is the case, sterically hindered bases are employed. A few examples are given below (H.O. House, 1972 I. Kuwajima, 1976). [Pg.10]

Sodium hydride was used as the base in this example It is often used instead of sodium ethoxide in these reactions... [Pg.892]

Sodium hydride is manufactured by the reaction of hydrogen and molten sodium metal dispersed by vigorous agitation ia mineral oil (4). [Pg.298]

A AlI lation. 1-Substitution is favored when the indole ring is deprotonated and the reaction medium promotes the nucleophilicity of the resulting indole anion. Conditions which typically result in A/-alkylation are generation of the sodium salt by sodium amide in Hquid ammonia, use of sodium hydride or a similar strong base in /V, /V- dim ethyl form am i de or dimethyl sulfoxide, or the use of phase-transfer conditions. [Pg.85]

Fig. 3. Synthesis of fluoxetine (31). 3-ChIoro-I-phenyl-I-propanol reacts with sodium iodide to afford the corresponding iodo derivative, followed by reaction with methylamine, to form 3-(methyl amin o)-1-phenyl-1-propan 0I. To the alkoxide of this product, generated using sodium hydride, 4-fluorobenzotrifluoride is added to yield after work-up the free base of the racemic fluoxetine (31), thence transformed to the hydrochloride (51)... Fig. 3. Synthesis of fluoxetine (31). 3-ChIoro-I-phenyl-I-propanol reacts with sodium iodide to afford the corresponding iodo derivative, followed by reaction with methylamine, to form 3-(methyl amin o)-1-phenyl-1-propan 0I. To the alkoxide of this product, generated using sodium hydride, 4-fluorobenzotrifluoride is added to yield after work-up the free base of the racemic fluoxetine (31), thence transformed to the hydrochloride (51)...
Lithium hydride is perhaps the most usehil of the other metal hydrides. The principal limitation is poor solubiUty, which essentially limits reaction media to such solvents as dioxane and dibutyl ether. Sodium hydride, which is too insoluble to function efficiently in solvents, is an effective reducing agent for the production of silane when dissolved in a LiCl—KCl eutectic at 348°C (63—65). Magnesium hydride has also been shown to be effective in the reduction of chloro- and fluorosilanes in solvent systems (66) and eutectic melts (67). [Pg.23]

Hydrogen and sodium do not react at room temperature, but at 200—350°C sodium hydride is formed (24,25). The reaction with bulk sodium is slow because of the limited surface available for reaction, but dispersions in hydrocarbons and high surface sodium react more rapidly (7). For the latter, reaction is further accelerated by surface-active agents such as sodium anthracene-9-carboxylate and sodium phenanthrene-9-carboxylate (26—28). [Pg.163]

The reaction is displaced to the right by dissociation of sodium hydride and Hberation of hydrogen. This dissociation is favored under vacuum or when the reaction 2one is swept with an inert gas to remove the hydrogen (24,25). In this manner, sodium monoxide substantially free of sodium and sodium hydroxide is produced. In the more compHcated reaction between sodium metal and anhydrous potassium hydroxide, potassium metal and sodium hydroxide are produced in a reversible reaction (42,43) ... [Pg.164]

An interesting variant in which nucleophilic aromatic substitution is carried out on the crown nucleus rather than using the crown as nucleophile was reported by Haines . In this approach, hexafluorobenzene was stirred in 1,2-dimethoxyethane at room temperature with pentaethylene glycol and sodium hydride. A double nucleophilic aromatic substitution occurred affording 2, 3, 4 ,5 -tetrafluorobenzo-15-crown-5 as an oil in 38% yield. The reaction is illustrated below. [Pg.28]

Reinhoudt, Gray, Smit and Veenstra prepared a number of monomer and dimer crowns based on a variety of substituted xylylene units. They first conducted the reaction of 1,2-dibromomethylbenzene and a polyethylene glycol with sodium hydride or potassium Z-butoxide in toluene solution. Mixtures of the 1 1 and 2 2 (monomer and dimer) products were isolated and some polymer was formed . The reaction was conducted at temperatures from 30—60° and appeared to be complete in a maximum of one hour. The authors noted that the highest yield of 1 1 cyclic product was obtained with disodium tetraethylene glycolate instead of dipotassium hexaethylene gly-colate (see also Chap. 2) . Chloromethylation of 1,3-benzodioxole followed by reaction with disodium tetraethylene glycolate afforded the macrocycle (29% yield) illustrated in Eq. (3.20). [Pg.29]

A total of 3 g (0.13 moles) of sodium hydride is added to a solution consisting of 10 g of 17 -hydroxy-5a-androstan-3-one (36 mmoles) in 200 ml of benzene and 10 ml of ethyl formate. The reaction mixture is allowed to stand under nitrogen for 3 days followed by dropwise addition of 10 ml of methanol to decompose the excess of sodium hydride. The solution is then diluted with 300 ml water and the layers are separated. The basic aqueous solution is extracted with ether to remove neutral material. The aqueous layer is acidified with 80 ml of 3 A hydrochloric acid and the hydroxymethylene steroid is extracted with benzene and ether. The combined organic extracts are washed with water and saturated sodium chloride solution and then dried over magnesium sulfate and concentrated. The residue, a reddish-yellow oil, crystallized from 10 ml of ether to yield 9.12 g (83%) of 17 -hydroxy-2-hydroxymethylene-5a-androstan-3-one mp 162-162.5°. Recrystallization from chloroform-ether gives an analytical sample mp 165-165.5° [a]o 53° (ethanol) 2 ° 252 mjj. (g 11,500), 307 m u (e 5,800). [Pg.95]


See other pages where Reaction sodium hydride is mentioned: [Pg.670]    [Pg.352]    [Pg.936]    [Pg.200]    [Pg.670]    [Pg.352]    [Pg.936]    [Pg.200]    [Pg.141]    [Pg.123]    [Pg.196]    [Pg.922]    [Pg.922]    [Pg.923]    [Pg.221]    [Pg.121]    [Pg.314]    [Pg.89]    [Pg.515]    [Pg.298]    [Pg.29]    [Pg.169]    [Pg.112]    [Pg.240]    [Pg.629]    [Pg.15]    [Pg.85]    [Pg.417]    [Pg.19]    [Pg.45]    [Pg.50]    [Pg.70]    [Pg.353]   
See also in sourсe #XX -- [ Pg.165 ]




SEARCH



Ethanol reaction with sodium hydride

Hydriding reaction

Reactions hydrides

Sodium hydride

Sodium hydride polymer metalation reaction

Sodium hydride, reaction with

Sodium hydride, reaction with alcohols

Sodium hydride, reaction with malonates

Sodium hydride, reaction with phosphonate esters

Sodium hydride, reaction with phosphonium salts

© 2024 chempedia.info