Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium ethoxide condensations

The sodio derivative, which is prepared by mixing alcoholic solutions of the ester and of sodium ethoxide, condenses with alkyl halides to yield mono-alkyl C-substituted products, for example ... [Pg.475]

Dicoumarol Dicoumarol, 3,3 -methylene-bis(4-hydroxycoumarin) (24.1.8), is synthesized from 4-hydroxycoumarine (24.1.7), which is in turn synthesized from salicylic acid methyl ester by cyclization to a chromone derivative using sodium or sodium methoxide or from o-oxyacetophenone by reacting it with diethylcarbonate in the presence of sodium ethoxide. Condensation of the resulting 4-hydroxycoumarin with formaldehyde as a phenol component gives dicoumarol [6-9],... [Pg.325]

Claisen condensation Condensation of an ester with another ester, a ketone or a nitrile in the presence of sodium ethoxide, sodium or sodamidc, with the elimination of an alcohol. The result is the formation of a / -ketonic ester, ketone, or nitrile respectively, e.g. [Pg.101]

This Reaction should be carefully distinguished from the Claisen Conden-tation, which is the condensation of an ester, under the influence of sodium ethoxide, with (i) another ester, (ii) a ketone, or (iii) a nitrile, with the elimination of alcohol. For details of this condensation, see Ethyl Acetoacetate, p. 264. [Pg.231]

It is readily prepared by the action of metallic sodium on dry ethyl acetate. The reaction, which occurs only in the presence of a trace of ethanol, is complex, but may be considered (in effect) as a condensation of two molecules of ethyl acetate under the influence of sodium ethoxide, the sodium derivative of the enol form being thus obtained. Clearly, only a trace of ethanol is thus initially... [Pg.264]

Place 30 ml. of ethanol in a 200 ml. conical flask fitted to a reflux water-condenser, and then add 1-4 g. of sodium cut into small pieces. The sodium rapidly dissolves to give a solution of sodium ethoxide, the ethanol boiling under the heat of the reaction. When the sodium has completely dissolved, detach the flask and cool it in ice-water. [Pg.276]

Barbituric acid and 2-thiobarbituric acid are readily prepared by the condensation of diethylmalonate with urea and thiourea respectively, in the presence of sodium ethoxide. The use of substituted derivatives of urea and thiourea and of diethyl malonate will clearly lead to a wide range of barbituric and thiobarbituric acids having substituents in the i, 3, or 5 positions. [Pg.306]

The formation of ethyl acetoacetate is an example of a general reaction knowu as the acetoacetlc ester condensation in which an ester having hydrogen on the a-carbon atom condenses with a second molecule of the same ester or with another ester (which may or may not have hydrogen on the a-carbon atom) in the presence of a basic catalyst (sodium, sodium ethoxide, sodamide, sodium triphenylmethide) to form a p-keto-ester. The mechanism of the reaction may be illustrated by the condensation of ethyl acetate with another molecule of ethyl acetate by means of sodium ethoxide. ... [Pg.476]

Pelargonic acid (n-Nonoic acid), CH3(CH2),COOH. Equip a 1-litre, three-necked flask with a reflux condenser, a mercury-sealed stirrer, a dropping funnel and a thermometer. Place 23 g. of sodium, cut in small pieces, in the flask, and add 500 ml. of anhydrous n-butyl alcohol (1) in two or three portions follow the experimental details given in Section 111,152 for the preparation of a solution of sodium ethoxide. When the sodium has reacted completely, allow the solution to cool to 70-80° and add 160 g. (152 ml.) of redistilled ethyl malonate rapidly and with stirring. Heat the solution to 80-90°, and place 182 5 g. (160 ml.) of n-heptyl bromide (compare experimental details in Section 111,37) in the dropping funnel. Add the bromide slowly at first until precipitation of sodium bromide commences, and subsequently at such a rate that the n-butyl alcohol refluxes gently. Reflux the mixture until it is neutral to moist litmus (about 1 hour). [Pg.487]

Esters of dicarboxyUc acids having hydrogen on tbe 8 or e carbon atoms undergo intramolecular cyclisation when heated with sodium or with sodium ethoxide. This cyclisation is known as the Dieckmann reaction. It is essentially an application of the Claiseu (or acetoacetic eater) condensation to the formation of a ring system the condensation occurs internally to produce s... [Pg.856]

Trimethylene dibromide (1 mol) condenses with ethyl malonate (1 mol) in the presence of sodium ethoxide (2 mols) to form ethyl cydobutane-1 1-dksrboxylate (I). Upon hydrolysis of the latter with alcoholic potassium hydroxide, followed by acidification cyciobutane-1 1-dicarboxylic acid (II) is obtained. [Pg.857]

The acylation of ketones with esters an example of the Clalsen condensation is generally effected with a basic reagent, such as sodium ethoxide, sodium, sodamide or sodium hy dride. Thus acetone and ethyl acetate condense in the presence of sodium ethoxide to yield acetylacetone ... [Pg.861]

The condensation of aldehydes and ketones with succinic esters in the presence of sodium ethoxide is known as the Stobbe condensation. The reaction with sodium ethoxide is comparatively slow and a httlo reduction of the ketonic compound to the carbinol usually occurs a shorter reaction time and a better yield is generally obtained with the more powerful condensing agent potassium ieri.-butoxide or with sodium hydride. Thus benzophenone condenses with diethyl succinate in the presence of potassium [Pg.919]

Mesityl oxide (Section 111,79) (I) condenses with ethyl malonate in the presence of sodium ethoxide to give the sodium derivative of (II) this upon hydrolysis with aqueous potassium hydroxide, followed by acidification, gives the cyclic diketone 5 5-dimethyl-l 3-cycfohexanedione (III), of which the enoUc form is 5 5-dimethyldihydroresorcinol (IV) ... [Pg.963]

Indanedioiie (III) may also be prepared by condensation of diethyl phthalate (V) with ethyl acetate in the presence of sodium ethoxide the resulting sodium 1 3-indanedione-2-carboxylic ester (VI) upon warming with sulphuric acid yields (HI). [Pg.994]

Ethyl malonate condenses with urea in the presence of sodium ethoxide to yield barbituric acid (malonylurea) ... [Pg.1001]

The condensation of 1 mol of ethyl malonate with two mols of ethyl iodide in the presence of two mols of sodium ethoxide gives a good yield of ethyl diethylraalonate. Upon allowing the latter to react with the theoretical quantity of urea in the presence of an alcoholic solution of sodium ethoxide, veronal (diethylbarbituric acid or diethylmalonylurea) is produced. [Pg.1002]

Ethyl phenylethylmalonate. In a dry 500 ml. round-bottomed flask, fitted with a reflux condenser and guard tube, prepare a solution of sodium ethoxide from 7 0 g. of clean sodium and 150 ml. of super dry ethyl alcohol in the usual manner add 1 5 ml. of pure ethyl acetate (dried over anhydrous calcium sulphate) to the solution at 60° and maintain this temperature for 30 minutes. Meanwhile equip a 1 litre threenecked flask with a dropping funnel, a mercury-sealed mechanical stirrer and a double surface reflux condenser the apparatus must be perfectly dry and guard tubes should be inserted in the funnel and condenser respectively. Place a mixture of 74 g. of ethyl phenylmalonate and 60 g. of ethyl iodide in the flask. Heat the apparatus in a bath at 80° and add the sodium ethoxide solution, with stirring, at such a rate that a drop of the reaction mixture when mixed with a drop of phenolphthalein indieator is never more than faintly pink. The addition occupies 2-2 -5 hoius continue the stirring for a fiuther 1 hour at 80°. Allow the flask to cool, equip it for distillation under reduced pressure (water pump) and distil off the alcohol. Add 100 ml. of water to the residue in the flask and extract the ester with three 100 ml. portions of benzene. Dry the combined extracts with anhydrous magnesium sulphate, distil off the benzene at atmospheric pressure and the residue under diminished pressure. C ollect the ethyl phenylethylmalonate at 159-160°/8 mm. The yield is 72 g. [Pg.1004]

Simple esters (e.g., ethyl acetate) undergo the acetoacetic ester condense tion (compare Section 111,151). The effective condensing agent is sodium ethoxide, produced by the action of sodium upon traces of alcohol present in the ester ... [Pg.1066]

The main example of a category I indole synthesis is the Hemetsberger procedure for preparation of indole-2-carboxylate esters from ot-azidocinna-mates[l]. The procedure involves condensation of an aromatic aldehyde with an azidoacetate ester, followed by thermolysis of the resulting a-azidocinna-mate. The conditions used for the base-catalysed condensation are critical since the azidoacetate enolate can decompose by elimination of nitrogen. Conditions developed by Moody usually give good yields[2]. This involves slow addition of the aldehyde and 3-5 equiv. of the azide to a cold solution of sodium ethoxide. While the thermolysis might be viewed as a nitrene insertion reaction, it has been demonstrated that azirine intermediates can be isolated at intermediate temperatures[3]. [Pg.45]

With the more acidic 2-acetamido-4-R-thiazoles. using the weaker base NaOH as condensation agent, a mixture of ring (45) and exocyclic N-alkylation (46) may be observed (Scheme 33) (121). Reaction of 2-acetamido-4-methylthiazole in alcoholic sodium ethoxide solution with a variety of alkylating agents has been reported (40-44). [Pg.35]

Sodium ethoxide is used in organic synthesis as a condensing and reducing agent. The reaction between sodium ethoxide and sulfur monochloride yields diethyl thiosulfite (19). [Pg.402]

The Guerbet reaction (386—389) involving condensation of ethanol in the presence of sodium ethoxide, catalyzed by potassium hydroxide and boric anhydride (390,391) or alkaline phosphates (392), gives / -butanol [71-36-3]. ... [Pg.416]

Quinoxaline mono-N-oxides are also available by a direct synthesis from n-nitroaniline derivatives. Condensation of acetyl chloride derivatives with o-nitroaniline followed by treatment with sodium ethoxide in ethanol yields the mono-N-oxides in good yields (Scheme 20) (64JCS2666). [Pg.170]

Ethyl oxalylsuccinate has been prepared by the condensation of ethyl oxalate with ethyl succinate in the presence of sodium ethoxide or of potassium ethoxide. The method described above is somewhat more convenient, and has given a higher yield of a better product, than one based upon sodium ethoxide, submitted by A. E. Martell and R. M. Herbst. [Pg.44]

Sodium methoxide [124-41-4] M 54.0. It behaves the same as sodium ethoxide. It is hygroscopic and is hydrolysed by moist air to NaOH and EtOH. Material that has been kept under N2 should be used. If erratic results are obtained, even with recently purchased NaOMe it should be freshly prepared thus Clean Na (37g) cut in l-3g pieces is added in small portions to stirred MeOH (800mL) in a 2L three necked flask equipped with a stirrer and a condenser with a drying tube. After all the Na has dissolved the MeOH is removed by distillation under vacuum and the residual NaOMe is dried by heating at 150° under vacuum and kept under dry N2 [Org Synth 39 51 1959]. [Pg.473]


See other pages where Sodium ethoxide condensations is mentioned: [Pg.54]    [Pg.250]    [Pg.476]    [Pg.481]    [Pg.485]    [Pg.863]    [Pg.865]    [Pg.913]    [Pg.923]    [Pg.1002]    [Pg.95]    [Pg.908]    [Pg.908]    [Pg.52]    [Pg.107]    [Pg.111]    [Pg.259]    [Pg.162]    [Pg.4]    [Pg.41]   
See also in sourсe #XX -- [ Pg.832 , Pg.836 ]

See also in sourсe #XX -- [ Pg.882 , Pg.883 , Pg.884 , Pg.885 ]




SEARCH



2-Butanone, condensation with diethyl oxalate and sodium ethoxide

Diethyl oxalate, condensation with 2butanone and sodium ethoxide

Ethoxide

Sodium ethoxide

© 2024 chempedia.info