Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium—continued residues

Dibromobutane (from 1 4-butanediol). Use 45 g. of redistilled 1 4-butanediol, 6-84 g. of purified red phosphorus and 80 g. (26 ml.) of bromine. Heat the glycol - phosphorus mixture to 100-150° and add the bromine slowly use the apparatus of Fig. Ill, 37, 1. Continue heating at 100-150° for 1 hour after all the bromine has been introduced. Allow to cool, dilute with water, add 100 ml. of ether, and remove the excess of red phosphorus by filtration. Separate the ethereal solution of the dibromide, wash it successively with 10 per cent, sodium thiosulphate solution and water, then dry over anhydrous potassium carbonate. Remove the ether on a water bath and distil the residue under diminished pressure. Collect the 1 4-dibromobutane at 83-84°/12 mm. the yield 3 73 g. [Pg.283]

Equip a 1-litre three-necked flask with a mechanical stirrer, a separatory funnel and a thermometer. Place a solution of 47 g. of sodium cyanide (or 62 g. of potassium cyanide) in 200 ml. of water in the flask, and introduce 58 g. (73-5 ml.) of pure acetone. Add slowly from the separatory fumiel, with constant stirring, 334 g. (275 ml.) of 30 per cent, sulphuric acid by weight. Do not allow the temperature to rise above 15-20° add crushed ice, if necessary, to the mixture by momentarily removing the thermometer. After all the acid has been added continue the stirring for 15 minutes. Extract the reaction mixture with three 50 ml. portions of ether, dry the ethereal extracts with anhydrous sodium or magnesium sulphate, remove most of the ether on a water bath and distil the residue rapidly under diminished pressure. The acetone cyanohydrin passes over at 80-82°/15 mm. The yield is 62 g. [Pg.348]

To obtain a maximum yield of the acid it is necessary to hydrolyse the by-product, iaoamyl iaovalerate this is most economically effected with methyl alcoholic sodium hydroxide. Place a mixture of 20 g. of sodium hydroxide pellets, 25 ml. of water and 225 ml. of methyl alcohol in a 500 ml. round-bottomed flask fitted with a reflux (double surface) condenser, warm until the sodium hydroxide dissolves, add the ester layer and reflux the mixture for a period of 15 minutes. Rearrange the flask for distillation (Fig. II, 13, 3) and distil off the methyl alcohol until the residue becomes pasty. Then add about 200 ml. of water and continue the distfllation until the temperature reaches 98-100°. Pour the residue in the flask, consisting of an aqueous solution of sodium iaovalerate, into a 600 ml. beaker and add sufficient water to dissolve any solid which separates. Add slowly, with stirring, a solution of 15 ml. of concentrated sulphuric acid in 50 ml. of water, and extract the hberated acid with 25 ml. of carbon tetrachloride. Combine this extract with extract (A), dry with a httle anhydrous magnesium or calcium sulphate, and distil off the carbon tetrachloride (Fig. II, 13, 4 150 ml. distiUing or Claisen flask), and then distil the residue. Collect the wovaleric acid 172-176°. The yield is 56 g. [Pg.356]

Fit a 1500 ml. bolt-head flask with a reflux condenser and a thermometer. Place a solution of 125 g. of chloral hydrate in 225 ml. of warm water (50-60°) in the flask, add successively 77 g. of precipitated calcium carbonate, 1 ml. of amyl alcohol (to decrease the amount of frothing), and a solution of 5 g. of commercial sodium cyanide in 12 ml. of water. An exothermic reaction occurs. Heat the warm reaction mixture with a small flame so that it reaches 75° in about 10 minutes and then remove the flame. The temperature will continue to rise to 80-85° during 5-10 minutes and then falls at this point heat the mixture to boiling and reflux for 20 minutes. Cool the mixture in ice to 0-5°, acidify with 107-5 ml. of concentrated hydrochloric acid. Extract the acid with five 50 ml. portions of ether. Dry the combined ethereal extracts with 10 g. of anhydrous sodium or magnesium sulphate, remove the ether on a water bath, and distil the residue under reduced pressure using a Claiseii flask with fractionating side arm. Collect the dichloroacetic acid at 105-107°/26 mm. The yield is 85 g. [Pg.431]

Vinylacetic acid. Place 134 g. (161 ml.) of allyl cyanide (3) and 200 ml. of concentrated hydrochloric acid in a 1-htre round-bottomed flask attached to a reflux condenser. Warm the mixture cautiously with a small flame and shake from time to time. After 7-10 minutes, a vigorous reaction sets in and the mixture refluxes remove the flame and cool the flask, if necessary, in cold water. Ammonium chloride crystallises out. When the reaction subsides, reflux the mixture for 15 minutes. Then add 200 ml. of water, cool and separate the upper layer of acid. Extract the aqueous layer with three 100 ml. portions of ether. Combine the acid and the ether extracts, and remove the ether under atmospheric pressure in a 250 ml. Claisen flask with fractionating side arm (compare Fig. II, 13, 4) continue the heating on a water bath until the temperature of the vapour reaches 70°. Allow the apparatus to cool and distil under diminished pressure (compare Fig. II, 20, 1) , collect the fraction (a) distilling up to 71°/14 mm. and (6) at 72-74°/14 mm. (chiefly at 72 5°/ 14 mm.). A dark residue (about 10 ml.) and some white sohd ( crotonio acid) remains in the flask. Fraction (6) weighs 100 g. and is analytically pure vinylacetic acid. Fraction (a) weighs about 50 g. and separates into two layers remove the water layer, dry with anhydrous sodium sulphate and distil from a 50 ml. Claisen flask with fractionating side arm a further 15 g. of reasonably pure acid, b.p. 69-70°/12 mm., is obtained. [Pg.465]

Equip a 500 ml. three-necked flask with an efficient stirrer (e.g., a Hershberg stirrer. Fig. II, 7, 8) and a reflux condenser stopper the third neck. Place a solution of 30 g. of sodium hydroxide in 100 ml. of water, and also 20-5 g. (17-1 ml.) of pure nitrobenzene in the flask, immerse it in a water bath maintained at 55-60°, and add 21 g. of anhydrous dextrose in small portions, with continuous stirring, during 1 hour. Then heat on a boiUng water bath for 2 hours. Pour the hot mixture into a 1 litre round-bottomed flask and steam distil (Fig. II, 40, 1) to remove aniline and nitrobenzene. When the distillate is clear (i.e., after about 1 htre has been collected), pour the residue into a beaker cooled in an ice bath. The azoxybenzene soon sohdifies. Filter with suction, grind the lumps of azoxybenzene in a mortar, wash with water, and dry upon filter paper or upon a porous plate. The yield of material, m.p. 35-35-5°, is 13 g. Recrystallise from 7 ml. of rectified spirit or of methyl alcohol the m.p. is raised to 36°. ... [Pg.631]

Cautiously add 250 g. (136 ml.) of concentrated sulphuric acid in a thin stream and with stirring to 400 ml. of water contained in a 1 litre bolt-head or three-necked flask, and then dissolve 150 g. of sodium nitrate in the diluted acid. Cool in a bath of ice or iced water. Melt 94 g. of phenol with 20 ml. of water, and add this from a separatory funnel to the stirred mixture in the flask at such a rate that the temperature does not rise above 20°. Continue the stirring for a further 2 hours after all the phenol has been added. Pour oflF the mother liquid from the resinous mixture of nitro compounds. Melt the residue with 500 ml. of water, shake and allow the contents of the flask to settle. Pour oflF the wash liquor and repeat the washing at least two or three times to ensure the complete removal of any residual acid. Steam distil the mixture (Fig. II, 40, 1 or Fig. II, 41, 1) until no more o-nitrophenol passes over if the latter tends to solidify in the condenser, turn oflF the cooling water temporarily. Collect the distillate in cold water, filter at the pump, and drain thoroughly. Dry upon filter paper in the air. The yield of o-nitrophenol, m.p. 46° (1), is 50 g. [Pg.677]

P-Hydroxy-a-naphthaldehyde, Equip a 1 litre three-necked flask with a separatory funnel, a mercury-sealed mechanical stirrer, and a long (double surface) reflux condenser. Place 50 g. of p-naphthol and 150 ml. of rectified spirit in the flask, start the stirrer, and rapidly add a solution of 100 g. of sodium hydroxide in 210 ml. of water. Heat the resulting solution to 70-80° on a water bath, and place 62 g. (42 ml.) of pure chloroform in the separatory funnel. Introduce the chloroform dropwise until reaction commences (indicated by the formation of a deep blue colour), remove the water bath, and continue the addition of the chloroform at such a rate that the mixture refluxes gently (about 1 5 hours). The sodium salt of the phenolic aldehyde separates near the end of the addition. Continue the stirring for a further 1 hour. Distil off the excess of chloroform and alcohol on a water bath use the apparatus shown in Fig. II, 41, 1, but retain the stirrer in the central aperture. Treat the residue, with stirring, dropwise with concentrated hydrochloric acid until... [Pg.704]

In a 250 ml. conical flask mix a solution of 14 g. of sodium hydroxide in 40 ml. of water and 21 g. (20 ml.) of pure benzaldehyde (Section IV,115). Add 15 g. of hydroxylamine hydrochloride in small portions, and shake the mixture continually (mechanical stirring may be employed with advantage). Some heat is developed and the benzaldehyde eventually disappears. Upon coohiig, a crystalline mass of the sodium derivative separates out. Add sufficient water to form a clear solution, and pass carbon dioxide into the solution until saturated. A colourless emulsion of the a or syn-aldoxime separates. Extract the oxime with ether, dry the extract over anhydrous magnesium or sodium sulphate, and remove the ether on a water bath. Distil the residue under diminished pressure (Fig. 11,20, 1). Collect the pure syn-benzaldoxime (a-benzald-oxime) at 122-124°/12 mm. this gradually solidifies on cooling in ice and melts at 35°. The yield is 12 g. [Pg.719]

The hydrolysis by alkali is illustrated by the following experimental details for benzamido. Place 3 g. of benzamide and 50 ml. of 10 per cent, sodium hydroxide solution in a 150 ml. conical or round-bottomed flask equipped with a reflux condenser. Boil the mixture gently for 30 minutes ammonia is freely evolved. Detach the condenser and continue the boiling in the open flask for 3-4 minutes to expel the residual ammonia. Cool the solution in ice, and add concentrated hydrochloric acid until the mixture is strongly acidic benzoic acid separates immediately. Leave the mixture in ice until cold, filter at the pump, wash with a little cold water and drain well. RecrystaUise the benzoic acid from hot water. Determine the m.p., and confirm its identity by a mixed m.p. test. [Pg.799]


See other pages where Sodium—continued residues is mentioned: [Pg.718]    [Pg.485]    [Pg.718]    [Pg.718]    [Pg.512]    [Pg.1036]    [Pg.1036]    [Pg.448]    [Pg.216]    [Pg.718]    [Pg.718]    [Pg.81]    [Pg.245]    [Pg.315]    [Pg.174]    [Pg.250]    [Pg.252]    [Pg.256]    [Pg.287]    [Pg.311]    [Pg.337]    [Pg.355]    [Pg.384]    [Pg.417]    [Pg.419]    [Pg.459]    [Pg.491]    [Pg.517]    [Pg.567]    [Pg.587]    [Pg.588]    [Pg.618]    [Pg.632]    [Pg.668]    [Pg.680]    [Pg.730]    [Pg.732]    [Pg.785]    [Pg.813]    [Pg.816]    [Pg.825]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Sodium—continued

© 2024 chempedia.info