Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium acetate bisulphite

Acetylcyclohexanone. Method A. Place a mixture of 24-6 g. of cyclohexanone (regenerated from the bisulphite compound) and 61 g. (47 5 ml.) of A.R. acetic anhydride in a 500 ml. three-necked flask, fitted with an efficient sealed stirrer, a gas inlet tube reaching to within 1-2 cm. of the surface of the liquid combined with a thermometer immersed in the liquid (compare Fig. II, 7, 12, 6), and (in the third neck) a gas outlet tube leading to an alkali or water trap (Fig. II, 8, 1). Immerse the flask in a bath of Dry Ice - acetone, stir the mixture vigorously and pass commercial boron trifluoride (via an empty wash bottle and then through 95 per cent, sulphuric acid) as fast as possible (10-20 minutes) until the mixture, kept at 0-10°, is saturated (copious evolution of white fumes when the outlet tube is disconnected from the trap). Replace the Dry Ice-acetone bath by an ice bath and pass the gas in at a slower rate to ensure maximum absorption. Stir for 3 6 hours whilst allowing the ice bath to attain room temperature slowly. Pour the reaction mixture into a solution of 136 g. of hydrated sodium acetate in 250 ml. of water, reflux for 60 minutes (or until the boron fluoride complexes are hydrolysed), cool in ice and extract with three 50 ml. portions of petroleum ether, b.p. 40-60° (1), wash the combined extracts free of acid with sodium bicarbonate solution, dry over anhydrous calcium sulphate, remove the solvent by... [Pg.864]

A mixture of homoveratric acid (32 g), anhydrous sodium acetate (30.6 g) and acetic anhydride (52 mL) was refluxed for 4 hours, cooled and poured into 300 mL of ice-cold water. The resulting reddish bottom layer was separated and retained. The aqueous layer was extracted with two 50 mL. quantities of toluene and the combination of the reddish liquid and the toluene extracts was washed successively with four 100 mL. quantities of IN sodium hydroxide solution followed by two 50 mL. quantities of water. It was filtered through a plug of glass wool and distilled to remove the toluene and water. There was thus obtained about 25 g of crude phenylacetone. This was dissolved in 50 mL. IMS and added, with stirring, to 90 mL. of freshly prepared 40 % w/v sodium bisulphite solution. The mixture was stirred for 30 minutes and allowed to stand for 2 hours in a cold water bath. It was again stirred for 30 minutes, washed with 100 mL. of toluene and stirred for a further 15 minutes. It was then filtered and washed with 50 mL. of toluene and air dried. There was thus obtained 30 g of the bisulphite adduct of... [Pg.63]

The adsorptive properties of silica gel can be modified by incorporating substances such as bases or buffers, thus enabling gels with accurately defined pH values to be prepared. Admixtures of silica gel with sodium bisulphite and sodium acetate prove useful for the chromatography of sugars giving distinctive Rf ranges. [Pg.444]

Sodium mlphanilate.—Burns with difficulty, leaving a residue of (chiefly) sodium sulphide. Add dil. HCl, and confirm without delay the evolution of HjS by means of a filter-pa per moistened with lead acetate solution. Typical of salts of the sulphonic acids. Acetone sodium bisulphite.—Almost non-inflammable, leaving a colourless residue of sodium sulphite and sulphate. Transfer residue to a test-tube, add dil. HCl, warm, and confirm the SO2 evolved. [Pg.320]

Preparation of the sulphones. Dissolve the 2 4-dinitrophenyl-sulphide in the minimum volume of warm glacial acetic acid and add 3 per cent, potassium permanganate solution with shaking as fast as decolourisation occurs. Use a 50 per cent, excess of potassium permanganate if the sulphide tends to precipitate, add more acetic acid. Just decolourise the solution with sulphur dioxide (or with sodium bisulphite or alcohol) and add 2-3 volumes of crushed ice. Filter off the sulphone, dry, and recrystaUise from alcohol. [Pg.501]

Place 125 ml. of glacial acetic acid, 7 -5 g. of purifled red phosphorus (Section II,50,d) and 2 5 g. of iodine in a 500 ml, round-bottomed flask fitted with a reflux condenser. Allow the mixture to stand for 15-20 minutes with occasional shaking until aU the iodine has reacted, then add 2 5 ml. of water and 50 g, of benzilic acid (Section IV,127). Boil the mixture under reflux for 3 hours, and filter the hot mixture at the pump through a sintered glass funnel to remove the excess of red phosphorus. Pour the hot filtrate into a cold, weU-stirred solution of 12 g. of sodium bisulphite in 500 ml, of water the latter should be acid to litmus, pro duced, if necessary, by passing sulphur dioxide through the solution. This procedure removes the excess of iodine and precipitates the diphenyl-acetic acid as a fine white or pale yellow powder. Filter the solid with suction and dry in the air upon filter paper. The yield is 45 g., m.p. [Pg.773]

Free cydohexene from peroxides by treating it with a saturated solution of sodium bisulphite, separate, dry and distil collect the fraction, b.p. 81-83°. Mix 8 -2 g. of cycZohexene with 55 ml. of the reagent, add a solution of 15 mg. of osmium tetroxide in anhydrous butyl alcohol and cool the mixture to 0°. Allow to stand overnight, by which time the initial orange colouration will have disappeared. Remove the solvent and unused cydohexene by distillation at atmospheric pressure and fractionate the residue under reduced pressure. Collect the fraction of b.p. 120-140°/15 mm. this solidifies almost immediately. Recrystallise from ethyl acetate The yield of pure cis-l 2 cydohexanediol, m.p. 96°, is 5 0 g. [Pg.895]

The first synthesis of stable 3-hydroperoxy-sultams (24) which are a new class of sultam with oxidising properties, was reported. The synthesis involved oxidation of the isothiazolium salts (23) with hydrogen peroxide in acetic acid. Reduction of (24) with aqueous sodium bisulphite afforded the corresponding novel 3-hydroxysultams whereas thermolysis in ethanol resulted in the elimination of water to give 3-ketone derivatives, which are versatile as dieneophiles <96T783>. [Pg.174]

Non-destructive partial stripping techniques for basic dyes on acrylic fibres are carried out at 100 °C (or higher if possible) using, for example, 1-10% o.w.f. anionic retarder and 1 g/1 acetic acid (60%), or 1-5 g/1 Marseilles (olive oil) soap. Destructive stripping requires acidified (pH 5.5-6.0) sodium hypochlorite, followed by an antichlor treatment in sodium dithionite or sodium bisulphite. In some cases a preliminary boiling treatment in 5 gA monoethanolamine and 5 g/1 sodium chloride is said to improve the effect of the stripping treatment. [Pg.369]

Stop (1 % glacial acetic acid in deionised water) Fix (300 g sodium thiosulphate 30 g sodium bisulphite in 1 litre deionised water)... [Pg.190]

Cool the beaker in a bath of cold water and add 150 ml of cold water. Filter off the crude phenanthraquinone with suction and wash it with water until free from chromium salts. Suspend the solid in 20 ml of rectified spirit and add, with stirring, 20 ml of saturated sodium metabisulphite solution. Break up the lumps of the addition product with a glass rod and allow to stand, with frequent stirring, for 10 minutes. Add 150 ml of water to dissolve the addition product and filter with suction. Reject the precipitate which consists of the impurities present in the phenanthrene. Add saturated sodium carbonate solution to the filtrate until the bisulphite addition product is completely decomposed allow the precipitate to settle for 1 minute, then add a few drops of sodium carbonate solution and note whether any further precipitation occurs. Stir the precipitate for 2-3 minutes, filter with suction, wash with three 20 ml portions of water and drain well. Dry the product between filter papers and then in a desiccator over calcium chloride. The yield of phenanthraquinone, m.p. 206 °C, is 1.4 g (60%). The product may be recrystallised from glacial acetic acid (about 20 ml), but the m.p. is unaffected. [Pg.1024]


See other pages where Sodium acetate bisulphite is mentioned: [Pg.864]    [Pg.104]    [Pg.864]    [Pg.634]    [Pg.634]    [Pg.864]    [Pg.444]    [Pg.51]    [Pg.324]    [Pg.495]    [Pg.580]    [Pg.605]    [Pg.163]    [Pg.199]    [Pg.202]    [Pg.324]    [Pg.495]    [Pg.580]    [Pg.605]    [Pg.296]    [Pg.210]    [Pg.324]    [Pg.495]    [Pg.580]    [Pg.605]    [Pg.163]    [Pg.102]    [Pg.92]    [Pg.235]    [Pg.686]   
See also in sourсe #XX -- [ Pg.20 , Pg.48 ]




SEARCH



Sodium acetate

Sodium bisulphite

© 2024 chempedia.info