Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Slurry-phase reactor, Fischer-Tropsch

Figure L Reactor used for Fischer-Tropsch synthesis (a)fixed bed reactor, (b) slurry phase reactor... Figure L Reactor used for Fischer-Tropsch synthesis (a)fixed bed reactor, (b) slurry phase reactor...
Liu X, Hamasaki A, Honma T, Tokunaga M Anti-ASF distribution in Fischer-Tropsch synthesis over unsupported cobalt catalysts in a batch slurry phase reactor, Catal Today 175(l) 494-503, 2011. [Pg.385]

These reactors for hquids and liquids plus gases employ small particles in the range of 0.05 to 1.0 mm (0.0020 to 0.039 in), the minimum size hmited by filterability. Small diameters are used to provide as large an interface as possible since the internal surface of porous pellets is poorly accessible to the hquid phase. Solids concentrations up to 10 percent by volume can be handled. In hydrogenation of oils with Ni catalyst, however, the sohds content is about 0.5 percent, and in the manufacture of hydroxylamine phosphate with Pd-C it is 0.05 percent. Fischer-Tropsch slurry reac tors have been tested with concentrations of 10 to 950 g catalyst/L (0.624 to 59.3 IbiTi/fF) (Satterfield and Huff, Chem. Eng. Sci., 35, 195 [1980]). [Pg.2104]

Epoxides such as ethylene oxide and higher olefin oxides may be produced by the catalytic oxidation of olefins in gas-liquid-particle operations of the slurry type (S7). The finely divided catalyst (for example, silver oxide on silica gel carrier) is suspended in a chemically inactive liquid, such as dibutyl-phthalate. The liquid functions as a heat sink and a heat-transfer medium, as in the three-phase Fischer-Tropsch processes. It is claimed that the process, because of the superior heat-transfer properties of the slurry reactor, may be operated at high olefin concentrations in the gaseous process stream without loss with respect to yield and selectivity, and that propylene oxide and higher... [Pg.77]

Of the technological modifications, Fischer-Tropsch synthesis in the liquid phase (slurry process) may be used to produce either gasoline or light alkenes under appropriate conditions249,251 in a very efficient and economical way.267 The slurry reactor conditions appear to establish appropriate redox (reduction-oxidation) conditions throughout the catalyst sample. The favorable surface composition of the catalyst (oxide and carbide phases) suppresses secondary transformations (alkene hydrogenation, isomerization), thus ensuring selective a-olefin formation.268... [Pg.107]

Gas-liquid bubble columns and gas-liquid-solid slurry bubble columns are widely used in the chemical and petrochemical industries for processes such as methanol synthesis, coal liquefaction, Fischer-Tropsch synthesis and separation methods such as solvent extraction and particle/gas flotation. The hydrodynamic behavior of gas-liquid bubble columns and gas-liquid-solid slurry bubble columns are of great importance for the design and scale-up of reactors. Although the hydrodynamics of the bubble and slurry bubble columns has been a subject of intensive research through experiments and computations, the flow structure quantification of complex multi-phase flows are still not well understood, especially in the three-dimensional region. In bubble and slurry bubble columns, the presence of gas bubbles plays an important role to induce appreciable liquid/solids mixing as well as mass transfer. The flows within these systems are divided into two... [Pg.191]

Fischer-Tropsch Technology FTS can be carried out in several different reactor types fixed bed, fluidized bed, or slurry phase and at different temperatures. The high-temperature Fischer-Tropsch (HTFT) synthesis runs at 320°C-350°C, at which temperatures typically all products are in the gas phase [22], HTFT is operated in fluidized-bed reactors, with iron catalysts. Selectivities correspond to chain-growth probabilities in the range of 0.70-0.75 and are ideal for gasoline production, but olefins and oxygenates are formed as well and are used as chemicals. [Pg.451]

In the design of upflow, three phase bubble column reactors, it is important that the catalyst remains well distributed throughout the bed, or reactor space time yields will suffer. The solid concentration profiles of 2.5, 50 and 100 ym silica and iron oxide particles in water and organic solutions were measured in a 12.7 cm ID bubble column to determine what conditions gave satisfactory solids suspension. These results were compared against the theoretical mean solid settling velocity and the sedimentation diffusion models. Discrepancies between the data and models are discussed. The implications for the design of the reactors for the slurry phase Fischer-Tropsch synthesis are reviewed. [Pg.108]

As part of the work undertaken by APCI under contract to the DOE, to develop a slurry phase Fischer-Tropsch process to produce selectively transportation fuels, a study of the hydrodynamics of three phase bubble column reactors was begun using cold flow modelling techniques (l ). Part of this study includes the measurement of solid concentration profiles over a range of independent column operating values. [Pg.109]

The range of operating conditions for the 276 experimental run in the 12.7 cm column and 20 experimental runs to date in the 30.5 cm column are shown in Ta ble I. Relevant physical properties of the liquids are listed in Ta ble II., and compared with estimated data for the slurry phase Fischer-Tropsch pilot plant reactor at Rheinpreussen (12). Solid densities were obtained from the literature (13). As received, the isoparaffin (lM) sample was saturated with water. However, this ppm level of water was soon removed during the initial experiments by the dry nitrogen gas. Additional isoparaffin was added when required to maintain the solid concentration weight-percent. All water based runs used humidified air. [Pg.114]

On zeolitic catalysis, secondary reactions have to be anticipated such as isomerization and cracking which can inlluencc the Schulz—Flory distribution. ThLs has been used by the Mobil Oil Corporation to design a dual stage process for conversion of syntltesis gas to a gasoline higl) in octane rating, fn this process, the effluent of a conventional slurry phase Fischer- Tropsch reactor is converted over acidic ZSM-5 zeolite [136). [Pg.71]

Bubble column reactors (BCR) are widely used in chemical process industries to carry out gas-liquid and gas--liquid-solid reactions, the solid suspended in the liquid phase being most frequently a finely divided catalyst (slurry reactor). The main advantages of BCR are their simple construction, the absence of any moving parts, ease of maintenance, good mass transfer and excellent heat transfer properties. These favorable properties have lead to their application in various fields production of various chemical intermediates, petroleum engineering, Fischer-Tropsch synthesis, fermentations and waste water treatment. [Pg.213]

Slurry reactors (bubble towers) are fluidized with continuous flow of gas. The particles are smaller (less than 0.1 mm) than in the liquid fluidized systems (0.2-1 mm). In some operations the liquid and solid phases are stationary, but in others ftey circulate through the vessel. Such equipment has been used in Fischer-Tropsch plants and for hydrogenation of fatty esters to alcohols, furfural to furfuryl alcohol, and of glucose to sorbitol. Hydrogenation of benzene to cyclohexane is done at 50 bar and 220-225°C with Raney nickel of 0.01-0.1 mmdia. The relations between gas velocities, solids... [Pg.605]

The FT process is well known and already applied on a large scale [9,10,11,12]. Currently, the two players that operate commercial Fischer-Tropsch plants are Shell and Sasol. In the Sasol and Shell plants gasification of coal and partial oxidation of natural gas, respectively, produce the syngas for the FT synthesis with well-defined compositions. Shell operates the SMDS (Shell Middle Distillate Synthesis) process in Bintulu, Malaysia, which produces heavy waxes with a cobalt catalyst in multi-tubular fixed bed reactors. Sasol in South Afirica uses iron catalysts and operates several types of reactors, of which the slurry bubble column reactor is the most versatile (i.e. applied in the Sasol Slurry Phase Distillate SSPD),... [Pg.491]

Support modification has been reported earlier in the open literature [5,6,7,8,9]. Zirconia modification of silica supports was used to prevent the formation of unreducible cobalt-silicates [5]. Zr, Ce, Hf, or U modification of titania supports was reported to prevent the formation of cobalt-titanates during regeneration [6]. To increase the porosity of titania supports, they were modified with small amounts of binders, e.g. silica, alumina or zirconia [7]. Lanthanum oxide promotion of alumina was reported to be beneficial for improved production of products with higher boiling points [8], and zirconia modification of alumina supports was carried out to decrease the interaction of cobalt with alumina [9]. All these modified supports were either used for fixed bed cobalt based Fischer-Tropsch synthesis catalysts or they were used for slurry phase cobalt catalysts, but not tested under realistic Fischer-Tropsch synthesis conditions in large scale slurry bed reactors. [Pg.55]

It is well known that alumina, titania [10,11,12] and magnesium oxide [13,14] dissolve in acidic aqueous solutions and even at pH values close to the isoelectric point [15,16], In this study, it will be shown that these support surfaces were modified with promoters to increase the inertness thereof to acidic/aqueous environments, and not to stabilise the support against sintering and loss in surface area at high temperatures [17,18], This paper will deal with the modification of alumina and titania supports for cobalt based slurry phase Fischer-Tropsch catalysts to ensure the successful operation of slurry phase bubble column reactors on commercial scale,... [Pg.56]

Laboratory Fischer-Tropsch synthesis tests were performed in a slurry-phase Constant Stirred Tank Reactor. The pre-reduced catalyst (20-30 g) was suspended in ca 300 ml molten Fischer-Tropsch wax. Realistic Fischer-Tropsch conditions were employed, i.e. 220 °C 20 bar commercial synthesis gas feed 50 vol% H2, 25 vol% CO and 25 vol% inerts synthesis gas conversion levels in excess of 50%. Use was made of the ampoule sampling technique as the selected on-line synthesis performance monitoring method [23]. [Pg.57]


See other pages where Slurry-phase reactor, Fischer-Tropsch is mentioned: [Pg.21]    [Pg.2133]    [Pg.21]    [Pg.2636]    [Pg.1874]    [Pg.123]    [Pg.2615]    [Pg.2382]    [Pg.149]    [Pg.85]    [Pg.584]    [Pg.84]    [Pg.271]    [Pg.262]    [Pg.108]    [Pg.230]    [Pg.194]    [Pg.453]    [Pg.110]    [Pg.121]    [Pg.126]    [Pg.17]    [Pg.313]    [Pg.501]    [Pg.501]    [Pg.151]    [Pg.202]    [Pg.202]    [Pg.55]   


SEARCH



Fischer-Tropsch reactors

Fischer-Tropsch slurry reactor

Reactor phase

Slurry reactor

Slurry-phase reactor

Slurry-phase reactor, Fischer-Tropsch synthesis

© 2024 chempedia.info