Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enol silyl ethers catalysts

Entry R1 Silyl enol ether Catalyst loading (x) (mol%) 24 Yield3 24 (%)... [Pg.83]

Another preparative method for the enone 554 is the reaction of the enol acetate 553 with allyl methyl carbonate using a bimetallic catalyst of Pd and Tin methoxide[354,358]. The enone formation is competitive with the allylation reaction (see Section 2.4.1). MeCN as a solvent and a low Pd to ligand ratio favor enone formation. Two regioisomeric steroidal dienones, 558 and 559, are prepared regioselectively from the respective dienol acetates 556 and 557 formed from the steroidal a, /3-unsaturated ketone 555. Enone formation from both silyl enol ethers and enol acetates proceeds via 7r-allylpalladium enolates as common intermediates. [Pg.364]

For some condensations with silylated substrates as starting compounds, trimethylsilyl inflate can be used as a catalyst [103, 104, 105] Atypical example of such a reaction is the aldol type condensation of silyl enol ethers and acetals catalyzed by 1-5 mol% of trimethylsilyl inflate [103] (equation 53)... [Pg.961]

More recently, further developments have shown that the reaction outlined in Scheme 4.33 can also proceed for other alkenes, such as silyl-enol ethers of acetophenone [48 b], which gives the endo diastereomer in up to 99% ee. It was also shown that / -ethyl-/ -methyl-substituted acyl phosphonate also can undergo a dia-stereo- and enantioselective cycloaddition reaction with ethyl vinyl ether catalyzed by the chiral Ph-BOX-copper(ll) catalyst. The preparative use of the cycloaddition reaction was demonstrated by performing reactions on the gram scale and showing that no special measures are required for the reaction and that the dihydro-pyrans can be obtained in high yield and with very high diastereo- and enantioselective excess. [Pg.179]

The most frequently encountered, and most useful, cycloaddition reactions of silyl enol ethers are Diels-Alder reactions involving silyloxybutadicncs (Chapter 18). Danishefsky (30) has reviewed his pioneering work in this area, and has extended his studies to include heterodienophiles, particularly aldehydes. Lewis acid catalysis is required in such cases, and substantial asymmetric induction can be achieved using either a chiral lanthanide catalyst or an a-chiral aldehyde. [Pg.66]

Silyl enol ethers and ketene acetals derived from ketones, aldehydes, esters and lactones are converted into the corresponding o/i-unsaturated derivatives on treatment with allyl carbonates in high yields in the catalytic presence of the palladium-bis(diphenylphosphino)ethane complex (32). A phosphinc-free catalyst gives higher selectivity in certain cases, such as those involving ketene acetals. Nitrile solvents, such as acetonitrile, are essential for success. [Pg.67]

Rhodium-catalysed addition (10) of hydridosilanes (Chapter 17) to a/3-unsaturated carbonyl compounds can be performed regioselectively, to afford either the product of 1,2-addition, or, perhaps more usefully, that of 1,4-addition, i.e. the corresponding silyl enol ether this latter process is an excellent method for the regiospecific generation of silyl enol ethers. Of all catalyst systems investigated, tris(triphenylphosphine)rhodium(l) chloride proved to be the best. [Pg.146]

Diazonium salts react with oximes to give aryl oximes, which are easily hydrolyzed to aldehydes (R = H) or ketones." A copper sulfate-sodium sulfite catalyst is essential. In most cases higher yields (40-60%) are obtained when the reaction is used for aldehydes than for ketones. In another method for achieving the conversion ArNj —> ArCOR, diazonium salts are treated with R4Sn and CO with palladium acetate as catalyst. In a different kind of reaction, silyl enol ethers of aryl ketones, Ar C(OSiMe3)=CHR, react with sohd diazonium fluoroborates, ArNj BF4, to give ketones, ArCHRCOAr. " This is, in effect, an arylation of the aryl ketone. [Pg.938]

Hydrazoic acid can be added to certain Michael-type substrates (Z is as defined on p. 975) to give 3-azido compounds. The reaction apparently fails if R is phenyl. Ammonia also adds to enol ethers CH2=CHOR to give CH3—CH(OR)N3, and to silyl enol ethers, but it does not add to ordinary alkenes unless a Lewis acid catalyst, such as TiCU, is used, in which case good yields of azide can be obtained. Ammonia can also be added indirectly to ordinary alkenes by azidomercuration, followed by demercuration, analogous to the similar procedures mentioned in... [Pg.1002]

Trimethylsilyl enol ethers can also be prepared by 1,4-reduction of enones using silanes as reductants. Several effective catalysts have been found,38 of which the most versatile appears to be a Pt complex of divinyltetramethyldisiloxane.39 This catalyst gives good yields of substituted silyl enol ethers (e.g., Scheme 1.2, Entry 7). [Pg.16]

Excellent yields of silyl enol have also been obtained from enones using B(C6F5)3 as a catalyst.40 f-Butyldimethylsilyl, triethylsilyl, and other silyl enol ethers can also be made under these conditions. [Pg.17]

The lanthanide salts are unique among Lewis acids in that they can be effective as catalysts in aqueous solution.61 Silyl enol ethers react with formaldehyde and benzaldehyde in water-THF mixtures using lanthanide triflates such as Yb(03SCF3)3. The catalysis reflects the strong affinity of lanthanides for carbonyl oxygen, even in aqueous solution. [Pg.84]

Certain other metal ions also exhibit catalysis in aqueous solution. Two important criteria are rate of ligand exchange and the acidity of the metal hydrate. Metal hydrates that are too acidic lead to hydrolysis of the silyl enol ether, whereas slow exchange limits the ability of catalysis to compete with other processes. Indium(III) chloride is a borderline catalysts by these criteria, but nevertheless is effective. The optimum solvent is 95 5 isopropanol-water. Under these conditions, the reaction is syn selective, suggesting a cyclic TS.63... [Pg.84]

Enantioselective Catalysis of the Aldol Addition Reaction. There are also several catalysts that can effect enantioselective aldol addition. The reactions generally involve enolate equivalents, such as silyl enol ethers, that are unreactive toward the carbonyl component alone, but can react when activated by a Lewis acid. The tryptophan-based oxazaborolidinone 15 has proven to be a useful catalyst.148... [Pg.125]

Scheme 2.9 gives some examples of use of enantioselective catalysts. Entries 1 to 4 are cases of the use of the oxazaborolidinone-type of catalyst with silyl enol ethers and silyl ketene acetals. Entries 5 and 6 are examples of the use of BEMOL-titanium catalysts, and Entry 7 illustrates the use of Sn(OTf)2 in conjunction with a chiral amine ligand. The enantioselectivity in each of these cases is determined entirely by the catalyst because there are no stereocenters adjacent to the reaction sites in the reactants. [Pg.131]

A number of other chiral catalysts can promote enantioselective conjugate additions of silyl enol ethers, silyl ketene acetals, and related compounds. For example, an oxazaborolidinone derived from allothreonine achieves high enantioselectivity in additions of silyl thioketene acetals.323 The optimal conditions for this reaction also include a hindered phenol and an ether additive. [Pg.195]

Lewis acid catalysis has been used to promote stepwise [2 + 2] cycloaddition of silyl enol ethers and unsaturated esters.178 The best catalyst is (C2H5)2A1C1 and polyfluoroalkyl esters give the highest stereoselectivity. The reactions give the more stable trans products. [Pg.542]

Che et al. have reported that chiral Ru11(salen)s (54a) and (54b) are efficient catalysts for aziridination of alkenes (up to 83% ee) and amidation of silyl enol ethers (up to 97% ee), respectively (Scheme 39).163... [Pg.230]

Sc(OTf)3 is an effective catalyst in aldol reactions of silyl enol ethers with aldehydes.49 Compared with other typical rare-earth-metal (Y, Yb) trifiates, Sc(OTf)3 has the strongest activity in the reaction of 1-trimethylsiloxycyclohexane with benzaldehyde in dichloromethane. Although the reaction scarcely proceeded at —78°C in the presence of Y(OTf)3 or Yb(OTf)3, the aldol adduct was obtained in 81% yield in the presence of Sc(OTf)3 (Scheme 9). [Pg.403]

Sn(OTf)2 can function as a catalyst for aldol reactions, allylations, and cyanations asymmetric versions of these reactions have also been reported. Diastereoselective and enantioselective aldol reactions of aldehydes with silyl enol ethers using Sn(OTf)2 and a chiral amine have been reported (Scheme SO) 338 33 5 A proposed active complex is shown in the scheme. Catalytic asymmetric aldol reactions using Sn(OTf)2, a chiral diamine, and tin(II) oxide have been developed.340 Tin(II) oxide is assumed to prevent achiral reaction pathway by weakening the Lewis acidity of Me3SiOTf, which is formed during the reaction. [Pg.434]

Hydrogenation of silyl enol ethers with the DIOP catalyst followed by hydrolysis [Eq. (52)] has yielded a route to optically active alcohols with low optical purities, 7% ee NMDPP (12) and MePhPR (R = n-Pr, Et, benzyl) systems were less effective (299). [Pg.355]

The stereoselective isomerization of allyl silyl ethers to (E)- or (Z)-silyl enol ethers was carried out in the presence of a cationic iridium(i) catalyst. The complex, prepared in situ by treating [Ir(cod)2]PFf,/2PPi3 with hydrogen was... [Pg.88]

Hagiwara et al.107 reported the chiral Pd(II) complex-catalyzed asymmetric addition of enol silyl ethers to imines, based on the belief that Pd(II) enolate was involved in the reaction. They found that with compound 171a as the catalyst, very low enantioselectivity was obtained in the asymmetric reactions between silyl enol ether and imine compounds (Scheme 3-58). However, in the... [Pg.184]

Adapted from Sasidharan and Kumar (257). Reaction conditions catalyst, 150 mg methyl trimethyl-silyl dimethylketene acetal (silyl enol ether), 10 mmol benzaldehyde, 10 mmol dry THF as dispersion medium, 10 mL temperature, 333 K reaction time, 18 h. Yield refers to the isolated product yield. Moles of product per mole of metal per hour. b The metal atom is substituted in the tetrahedral position. [Pg.138]

On the other hand, Ln(OTf)3 compounds, which were found to be effective catalysts for the hydroxy-methylation in aqueous media, also activate aldehydes other than formaldehyde in aldol reactions with silyl enol ethers in aqueous solvents.1121 One feature of the present reactions is that water-soluble... [Pg.5]


See other pages where Enol silyl ethers catalysts is mentioned: [Pg.44]    [Pg.104]    [Pg.385]    [Pg.945]    [Pg.63]    [Pg.546]    [Pg.546]    [Pg.552]    [Pg.569]    [Pg.113]    [Pg.85]    [Pg.272]    [Pg.273]    [Pg.348]    [Pg.153]    [Pg.61]    [Pg.88]    [Pg.111]    [Pg.432]    [Pg.109]    [Pg.326]    [Pg.132]    [Pg.4]   
See also in sourсe #XX -- [ Pg.2 , Pg.614 ]

See also in sourсe #XX -- [ Pg.2 , Pg.614 ]




SEARCH



Enolates silylation

Silyl enol ethers

Silyl enol ethers palladium catalysts

Silyl enolate

Silyl enolates

© 2024 chempedia.info