Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silver bromate iodate

TELLURIUM (13494-80-9) Finely divided powder or dust may be flammable and explosive. Violent reaction with strong oxidizers, bromine pentafluoride, halogens, interhalogens, iodine pentafluoride, hexalithium disilicide, lithium silicide, nitrosyl fluoride, oxygen difluoride, sodium peroxide, sulfur, zinc. Incompatible with cadmium, cesium, hafnium, strong bases, chemically active metals, iodic acid, iodine oxide, lead chlorite, lead oxide, mercury oxides, nitric acid, peroxyformic acid, platinum, silver bromate/iodate/ fluoride, nitryl fluoride, sodium nitrate. [Pg.1121]

Ha.la.tes, Silver chlorate, AgClO, silver bromate, AgBrO, and silver iodate, AglO, have been prepared. The halates may decompose explosively if heated. [Pg.89]

If the solution of silver bromate in dilute ammonia solution is treated drop-wise with sulphurous acid solution, silver bromide separates the latter dissolves in concentrated ammonia solution (difference from iodate). [Pg.339]

Kinetic studies of the oxidation reactions of dithionate (820 ) appear to be limited to early work and a recent examination of the reaction with silver(II). Oxidation by iodine , and by bromate, iodate and dichromate were all shown to occur through slow disproportionation to sulphite, viz. [Pg.359]

Peroxodisulphates, nitrites, bromates, iodates, and also periodates react similarly. The first-named may be decomposed by evaporating the sulphuric acid solution with a little silver nitrate as catalyst. [Pg.204]

The selectivity of the test is quite limited, even compared to the specificity seen in the identification test for chlorides. In the identification three criteria have to be fulfilled to qualify for a positive reaction. The unknown should give a white (curdled) precipitate formed upon addition of silver nitrate, which is insoluble in dilute nitric acid but redissolves in ammonia. In the limit test 2.4.4. Chlorides any substance capable of giving a white or weakly colored precipitate in dilute nitric acid will give a response like chloride, and this should be remembered in case of an xmexpected result. For the sake of example the following ions and substances are capable of giving a false positive reaction bromide, iodide, bromate, iodate, sulfite, chlorate, oxalate, and benzoate. In addition to this a variety of more complex organic substances are likely to precipitate, for example, alkaloids. [Pg.115]

Discussion. These anions are both determined as silver bromide, AgBr, by precipitation with silver nitrate solution in the presence of dilute nitric acid. With the bromate, initial reduction to the bromide is achieved by the procedures described for the chlorate (Section 11.56) and the iodate (Section 11.63). Silver bromide is less soluble in water than is the chloride. The solubility of the former is 0.11 mg L 1 at 21 °C as compared with 1.54 mg L 1 for the latter hence the procedure for the determination of bromide is practically the same as that for chloride. Protection from light is even more essential with the bromide than with the chloride because of its greater sensitivity (see Section 11.57). [Pg.477]

Apparent indicator constant 264, 267 Apparent stability constant 59 Aqua regia 111 Arc alternating current, 764 direct current, 763, 771 sensitivities of elements, (T), 766 Aromatic hydrocarbons analysis of binary mixtures, 715 Arsenates, D. of (ti) 357 Arsenic, D. of as silver arsenate, (ti) 357 as trisulphide, (g) 448 by iodine, (am) 634, (ti) 397 by molybdenum blue method, (s) 681 by potassium bromate, (ti) 406 by potassium iodate, (ti) 401 in presence of antimony, (s) 724 Arsenic(III) oxide as primary standard, 261... [Pg.856]

Bromates, chlorates or iodates ignite in contact with phosphonium iodide at ambient temperature if dry, or in presence of acid to generate bromic acid, etc. Ignition also occurs with nitric acid, and reaction with dry silver nitrate is very exothermic. Interaction with antimony pentachloride at ambient temperature proceeds explosively. [Pg.1671]

Impact sensitivities of mixtures of red phosphorus with various oxidants were determined in a direct drop-ball method, which indicated higher sensitivities than those determined with an indirect striker mechanism. Mixtures with silver chlorate were most sensitive, those with bromates, chlorates and chlorites were extremely sensitive, and mixtures with sodium peroxide and potassium superoxide were more sensitive than those with barium, calcium, magnesium, strontium or zinc peroxides. Mixtures with perchlorates or iodates had sensitivities comparable to those of unmixed explosives, such as lead azide, 3,5-dinitrobenzenediazonium-2-oxide etc. [Pg.1888]

Mercury(I) bromate, 0271 Potassium iodate, 4619 Silver iodate, 0020 Sodium iodate, 4624 Zinc bromate, 0279 See Other METAL OXOHALOGENATES... [Pg.239]

Palladium(II) oxide, 4825 Palladium(IV) oxide, 4835 Perchloric acid, 3998 Periodic acid, 4425 Permanganic acid, 4434 Peroxodisulfuric acid, 4482 Peroxodisulfuryl difluoride, 4328 Peroxomonosulfuric acid, 4481 Peroxytrifluoroacetic acid, 0666 Platinum hexafluoride, 4371 Platinum(IV) oxide, 4836 Plutonium hexafluoride, 4372 Potassium bromate, 0255 Potassium chlorate, 4017 Potassium dichromate, 4248 Potassium iodate, 4619 Potassium nitrate, 4650 Potassium nitrite, 4649 Potassium perchlorate, 4018 Potassium periodate, 4620 Potassium permanganate, 4647 Rhenium hexafluoride, 4373 Rubidium fluoroxysulfate, 4309 Ruthenium(VIII) oxide, 4862 Selenium dioxide, 4838 Selenium dioxide, 4838 Silver permanganate, 0021 Sodium chlorate, 4039 Sodium chlorite, 4038 Sodium dichromate, 4250 Sodium iodate, 4624 Sodium nitrate, 4721 Sodium nitrite, 4720... [Pg.309]

Comparing the stability of the triammincs of silver halides, the chloride is more stable than the bromide, and the iodide cither does not exist or is very unstable. This is contrary to the usual observations in the ammines, where the stability of the ammine rises from chloride to iodide. In the case of the ammines of the oxy-halogen salts of silver the most unstable is the iodate, which is non-existent at ordinary pressure, then comes the bromate, and the most stable is the chlorate.3... [Pg.38]


See other pages where Silver bromate iodate is mentioned: [Pg.986]    [Pg.986]    [Pg.256]    [Pg.318]    [Pg.319]    [Pg.319]    [Pg.1304]    [Pg.256]    [Pg.319]    [Pg.319]    [Pg.975]    [Pg.148]    [Pg.157]    [Pg.196]    [Pg.346]    [Pg.348]    [Pg.724]    [Pg.818]    [Pg.1091]    [Pg.1101]    [Pg.1103]    [Pg.1104]    [Pg.1113]    [Pg.1114]    [Pg.1120]    [Pg.648]    [Pg.4330]    [Pg.72]    [Pg.261]    [Pg.284]    [Pg.303]    [Pg.134]    [Pg.309]   
See also in sourсe #XX -- [ Pg.341 ]




SEARCH



Bromat

Bromate

Bromates

Bromation

Iodat

Iodate

Iodates

Silver Iodate

Silver bromate

© 2024 chempedia.info