Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Indicator constant

A variety of experimental techniques have been employed to research the material of this chapter, many of which we shall not even mention. For example, pressure as well as temperature has been used as an experimental variable to study volume effects. Dielectric constants, indices of refraction, and nuclear magnetic resonsance (NMR) spectra are used, as well as mechanical relaxations, to monitor the onset of the glassy state. X-ray, electron, and neutron diffraction are used to elucidate structure along with electron microscopy. It would take us too far afield to trace all these different techniques and the results obtained from each, so we restrict ourselves to discussing only a few types of experimental data. Our failure to mention all sources of data does not imply that these other techniques have not been employed to good advantage in the study of the topics contained herein. [Pg.200]

For x-ray investigations, the diffractometer method is generally used. The lattice constants indicate purity or composition of soHd solutions the rapid counting-tube goniometric method can be used at the manufacturing plant for quaUty control. The rotating-crystal and neutron diffraction methods are sometimes used for stmcture elucidation. [Pg.455]

Rate coefficients for protodeboronation of a number of substituted benzene-boronic acids were measured by Kuivila et al.621 at pH 6.70 and 6.42 at 90 °C, p = 0.14. The relative rates at the two pH values were reasonably constant, indicating that the same reaction was being studied for each compound (Table 200). The results indicate that all substituents increase the rate of reaction but... [Pg.297]

FIGURE 9.5 The size of the equilibrium constant indicates whether the reactants or the products are favored. In this diagram, the reactants are represented by blue cubes and the products by yellow cubes. Note that reactants are favored when K is small (top), products are favored when K is large (bottom), and reactants and products are in equal abundance when K = 1. [Pg.488]

The Michaelis constant (fCM) is an index of the stability of an enzyme-substrate complex. Does a high Michaelis constant indicate a stable or an unstable enzyme-substrate complex Explain your reasoning. [Pg.696]

Pulsed source techniques have been used to study thermal energy ion-molecule reactions. For most of the proton and H atom transfer reactions studied k thermal) /k 10.5 volts /cm.) is approximately unity in apparent agreement with predictions from the simple ion-induced dipole model. However, the rate constants calculated on this basis are considerably higher than the experimental rate constants indicating reaction channels other than the atom transfer process. Thus, in some cases at least, the relationship of k thermal) to k 10.5 volts/cm.) may be determined by the variation of the relative importance of the atom transfer process with ion energy rather than by the interaction potential between the ion and the neutral. For most of the condensation ion-molecule reactions studied k thermal) is considerably greater than k 10.5 volts/cm.). [Pg.156]

Values of the equilibrium constant K = [BrCl]2/([Br2][Cl2]) in the gaseous phase have been determined experimentally values were typically in the range 6.57-9, with 40-46 % dissociation at room temperature (ref. 2). The weak temperature dependence of the equilibrium constant indicates low heat of reaction indeed, it has been calculated from equilibrium data to be - 0.406 kcal/mole BrCl (ref. 2). [Pg.319]

The tiny value of this equilibrium constant indicates that a sample of fluorine at 25 °C consists almost entirely of F2 molecules. If the partial pressure of F2 is 1.0 bar at equilibrium, the partial pressure of fluorine atoms is 2.5 X 10 bar, which is negligible compared with 1.0 bar. Nevertheless, the equilibrium constant is not zero, indicating that some fluorine atoms are present in the gas. [Pg.1148]

The magnitude of this equilibrium constant indicates that the redox reaction goes essentially to completion. This reflects the fact that bromine is a potent oxidizing agent and copper is relatively easy to oxidize. [Pg.1393]

The spectra were recorded at 250 MHz in CDCI3, using tetramethylsilane as internal standard (TMS = 0). The multiplicities have been added by the reviewer and are based on the coupling constants indicated and examination of the visually reproduced spectra. The C-6 and C-7 protons and the aromatic protons resonating between 2.4 and 1.8 ppm, and 7.9 and 7.2 ppm, respectively, were not differentiated. [Pg.58]

The small value of the equilibrium constant indicates that the formation of carbonic acid is not very extensive in neutral water. However, the formation of carbonic acid is quite favored in acidic solution (arising from the citric acid also contained in the product) ... [Pg.117]

Mostly known for plasticizers only (see section 3.1), not for plasticized polymers or commercial polymers. The relative dielectric constant indicates the polarisability of the molecule (s of selected solvents for comparison hexane, 1.9 toluene, 2.4 chloroform, 4.8 ethyl acetate, 6.0 dichloromethane, 9.1 acetone, 20.7 water, 80.2). [Pg.318]

The kinetics of sorption of arsenite and arsenate in the presence of sorbed silicic acid have been only recently examined (Waltham and Eick 2002). These authors demonstrated that the sorption of silicic acid (added 60 h before arsenic) decreased the rate and the total amount of arsenic sorbed. The amount of arsenite sorbed decreased as the surface concentration of silicic acid increased. Furthermore, the inhibition of arsenite sorbed ranged from about 4% at a pH of 6 and 0.1 mM silicic acid up to 40% at a pH of 8 and 1 mol IT1 silicic acid. In contrast, silicic acid reduced the rate of arsenate sorption which decreased by increasing pH and silicic acid concentration, but the total quantity of arsenate sorbed remained nearly constant, indicating that arsenate was able to replace silicate. [Pg.51]

Conversely, the racemic film system appears to be solubilized by the achiral fatty acid component. At compositions of 10-33% palmitic acid, the ESP of the racemic system varies linearly with film composition, indicating that the monolayer in equilibrium with the racemic crystal is a homogeneous mixture of racemic SSME and palmitic acid. At compositions of less than 33% palmitic acid, the ESP is constant, indicating that three phases consisting of palmitic acid monolayer domains, racemic SSME monolayer domains, and racemic SSME crystals exist in equilibrium at the surface. [Pg.98]

Using basic pH leads to higher plateau rate constants, indicating that the ratedetermining step is reaction 18. Reaction 17 must be at least as fast as the rate of 02 addition in the highest 02 concentration used, kn 8 x 105 s 1, which is the limit of the instrument measurement. The G of benzene in pulse radiolysis was found to be equal to that of the nitroform anion (1.6 x 10-7 molJ-1) as can be expected from reactions 17-19. Since the yield of the cyclohexadienylperoxyl radical is 2.9 x 10-7 mol. 1 1 it means that only a fraction (ca 60%) of the cyclohexadienylperoxyl radicals eliminates HO2. The H02 elimination occurs by H-transfer of the allylic hydrogen to the oxygen... [Pg.332]

The MesSn" radical appears to couple to only two of the methyl groups. Moreover, the isotropic and anisotropic tin hyperfine coupling constants indicate that the Sn 5s and 5p orbital contributions are roughly 0.03 and 0.32, respectively (Table 6). Thus, compared... [Pg.277]

The constant value of the second-order rate constant indicates that this reaction indeed is second-order. [Pg.320]

Let us compute the value of the equilibrium constant for each reaction by combining the two solubility product constants. Large values of equilibrium constants indicate that the reaction is displaced far to the right. Values of K that are much smaller than 1 indicate that the reaction is displaced far to the left. [Pg.543]

Include these reactions in the original model in place of the original reaction (5). (You can assume that M is an extra species at the initial ethane concentration for this simulation.) Use the values of the rate constants indicated, and run the model simulation. What influence does this chemistry have on the conversion and selectivity How would you estimate the rate constants for these reactions ... [Pg.174]

The ozonide ion has widely spaced energy levels, and to first order the g values are not influenced by the host lattice or the surface. Thus, the absolute values of the g values are useful in the identification of the ion. These g values, along with the hyperfine coupling constants, are given in Table I. The three sets of hyperfine constants indicate that the oxygen atoms are not equivalent, at least when the ozonide ion is formed according to reaction 2. The geometry of the ion on MgO is believed to be... [Pg.132]


See other pages where Indicator constant is mentioned: [Pg.148]    [Pg.275]    [Pg.83]    [Pg.117]    [Pg.57]    [Pg.260]    [Pg.36]    [Pg.233]    [Pg.258]    [Pg.391]    [Pg.234]    [Pg.304]    [Pg.1148]    [Pg.177]    [Pg.28]    [Pg.516]    [Pg.404]    [Pg.28]    [Pg.648]    [Pg.88]    [Pg.232]    [Pg.326]    [Pg.51]    [Pg.41]    [Pg.94]    [Pg.163]    [Pg.91]    [Pg.474]    [Pg.91]    [Pg.417]   
See also in sourсe #XX -- [ Pg.519 ]




SEARCH



Acetone, dissociation constants indicators

Acid dissociation constant indicators

Acid-Base Indicators in Solvents of Low Dielectric Constant

Conditional indicator constant

Dissociation constant acid-base indicators

Dissociation constants, acetic acid indicators

Indicators, acid-base constant

© 2024 chempedia.info