Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicon trichlorosilane

Recently we reported the syntheses of bis(hypersilyl)stannylene and plumbylene, [(Me3Si)3Si]2Sn and [(Me3Si)3Si]2Pb [1], using solvent-free alkali metal derivatives of tris(trimethylsilyl)silane (hypersilane) [2], Based on this success we tried to utilize the same method for the synthesis of the hitherto unknown corresponding germylene and silylene. Thus, bis[bis(trimethylsilyl)amino]-germylene and, as source of divalent silicon, trichlorosilane had been reacted with sodium or lithium hypersilanide in -pentane at -30 to -60°C (Schemes 1 and 2). [Pg.82]

Brochures of the Firms Wacker-Sillronic arrd Sivento over Uhrapure Silicon. Trichlorosilane and Silrconlctrachloride. [Pg.282]

The formation of silicon carbide, SiC (carborundum), is prevented by the addition of a little iron as much of the silicon is added to steel to increase its resistance to attack by acids, the presence of a trace of iron does not matter. (Addition of silicon to bronze is found to increase both the strength and the hardness of the bronze.) Silicon is also manufactured by the reaction between silicon tetrachloride and zinc at 1300 K and by the reduction of trichlorosilane with hydrogen. [Pg.166]

Silicon is prepared commercially by heating silica and carbon in an electric furnace, using carbon electrodes. Several other methods can be used for preparing the element. Amorphous silicon can be prepared as a brown powder, which can be easily melted or vaporized. The Gzochralski process is commonly used to produce single crystals of silicon used for solid-state or semiconductor devices. Hyperpure silicon can be prepared by the thermal decomposition of ultra-pure trichlorosilane in a hydrogen atmosphere, and by a vacuum float zone process. [Pg.33]

Silicon reacts at elevated temperatures with the halogens, forming SiCl, Sil, SiBr, and SiF. There is also a series of halogen-substituted silanes such as trichlorosilane, SiH Cl, and dichlorosilane, S1H2CI2. Both SiCl and SiH Cl are relatively easy to make, purify, and reduce to silicon. These are the silicon compounds most often used as feedstocks in the manufacture of high purity silicon. [Pg.525]

The electronics market uses sihcon as trichlorosilane, which is decomposed with hydrogen at high temperatures to produce semiconductor-grade sihcon (see Silicon compounds). [Pg.537]

Table 3. Physical Properties of Silicon Tetrachloride and Trichlorosilane ... Table 3. Physical Properties of Silicon Tetrachloride and Trichlorosilane ...
Silicon Tetrachloride. Most commercially available sihcon tetrachloride is made as a by-product of the production of alkylchlorosilanes and trichlorosilane and from the production of semiconductor-grade sihcon by thermal reduction of trichlorosilane. [Pg.19]

Purification of Silicon. Chemical purity plays an equally important role in the bulk of materials as on the surface. To approach the goal of absolute stmctural perfection and chemical purity, semiconductor Si is purified by the distillation of trichlorosilane [10025-78-2] SiHCl, followed by chemical vapor deposition (CVD) of hulk polycrystalline siUcon. [Pg.117]

The possibility of the existence of organosilicone compounds was first predicted by Dumas in 1840, and in 1857 Buff and Wohler found the substance now known to be trichlorosilane by passing hydrochloric acid gas over a heated mixture of silicone and carbon. In 1863 Friedel and Crafts prepared tetraethylsilane by reacting zinc diethyl with silicon tetrachloride. [Pg.814]

The trichlorosilane may be obtained by reacting hydrogen chloride with silicon in yields of 70% and thus is obtainable at moderate cost. As the olefins are also low-cost materials this method provides a relatively cheap route to the intermediates. It is, of course, not possible to produce chloromethylsilanes by this method. [Pg.820]

On the commercial scale silicone resins are prepared batchwise by hydrolysis of a blend of chlorosilanes. In order that the final product shall be cross-linked, a quantity of trichlorosilanes must be incorporated into the blend. A measure of the functionality of the blend is given by the R/Si ratio (see Section 29.3). Whereas a linear polymer will have an R/Si ratio of just over 2 1, the ratio when using trichlorosilane alone will be 1 1. Since these latter materials are brittle, ratios in the range 1.2 to 1.6 1 are used in commercial practice. Since chlorophenylsilanes are also often used, the CH3/CgH5 ratio is a further convenient parameter of use in classifying the resins. [Pg.828]

Silicon Epitaxy. Silicon epitaxial films have superior properties. The applications are, however, limited by the high temperature of deposition, which is generally above 1000°C. These reactions use chlorinated compounds of silicon (tetrachloride, trichlorosilane, or dichlorosilane) as precursors as follows ... [Pg.221]

The next step is the hydrogen reduction of the trichlorosilane (Reaction 2 above). The end product is a poly crystalline silicon rod up to 200 mm in diameter and several meters in length. The resulting EGS material is extremely pure with less than 2 ppm of carbon and only a few ppb of boron and residual donors. The Czochralski pulling technique is used to prepare large single crystals of silicon, which are subsequently sliced into wafers for use in electronic devices.1 1... [Pg.223]

The reinforcing fibers are usually CVD SiC or modified aluminum oxide. A common matrix material is SiC deposited by chemical-vapor infiltration (CVI) (see Ch. 5). The CVD reaction is based on the decomposition of methyl-trichlorosilane at 1200°C. Densities approaching 90% are reported.b l Another common matrix material is Si3N4 which is deposited by isothermal CVI using the reaction of ammonia and silicon tetrachloride in hydrogen at 1100-1300°C and a total pressure of 5 torr.l" " ] The energy of fracture of such a composite is considerably higher than that of unreinforced hot-pressed silicon nitride. [Pg.481]

FIGURE 4.4 The production of polycrystalline silicon for the eleetronics industry involves several ehemieal steps aimed at the reduetion of impurities. These inelude (1) reaction of metallurgical grade silicon to produce a mixture of chlorosilanes, (2) distillation of trichlorosilane, and (3) reduction of trichlorosilane to polycrystalline silicon. Excerpted by special permission from Chemical Engineering, June 10, 1985. Copyright 1985 by McGraw-Hill, Inc., New York, NY 10020. [Pg.56]

Among the Friedel-Crafts alkylations of aromatic compounds with (chlorinated alkyl)silanes, the alkylation of benzene with (tt>-chloroalkyl)silanes in the presence of aluminum chloride catalyst was generally affected by two factors the spacer length between the Cl and silicon and the electronic nature of substituents on the silicon atom of (w-chloroalkyl)silanes. As the spacer length between the C—Cl and silicon increases from (chloromethyl)silane to (/i-chloroethyl)silane to (/-chloropropyl)silane, the reactivity of the silanes increases. As the number of chloro-groups on the silicon decreases from (chloromethyl)trichlorosilanes to (chloromethyl)methyldichlorosilanes to (chloromethyl)trimethylsilanes, the... [Pg.177]

Amongst the earliest measurements involving chemical functionality of the probe were those of Nakagawa et al. [69]. They investigated octadecyltrichlorosilane (OTS) chemically modified tips against chemically adsorbed monolayers of different alkyl-trichlorosilanes in ethanol, as shown schematically in Figure 14. When both tip and surface were modified by OTS, a large adhesive force was observed that was not present for the case of an unmodified silicon nitride tip on an OTS-modified surface. Additionally there... [Pg.42]

Mixing trichlorosilane, acetonitrile and diphenylsulphoxide, carried out at 10°C, detonated. This accident was put down to the exothermic addition reaction of the silicon-hydrogen bond on the carbon-nitrogen triple bond of nitrile. Other interpretations are possible for instance, the effect of traces of hydrogen chloride formed by the hydrolysis of chlorosilane on acetonitrile. [Pg.350]

Figure 4. shows the route from the high boiling residue of the direct synthesis to silicon carbo-nitride fibers. Methylchlorodisilanes and trichlorosilanes as additives are mixed in a specific ratio and react with methylamine and a small amount of ammonia to form an aminodisilane/oligosilazane. The subsequent polycondensation reaction of this mixture by heating to 250 °C yields a soluble and melt spinnable polysilazane. In comparision with the polysilane the properties of the polysilazane depend on the ratios of the disilanes/silanes and methylamine/ammonia and also on the reaction conditions. [Pg.296]

Siemens A method for making ultra-pure silicon for semiconductors by thermally decomposing trichlorosilane. Invented in 1954 by F. Bischof at Siemens-Halska. In 1993 it was the major process used worldwide. [Pg.245]

Silicone Resins As silicone resin are highly branched polymers, they are obtained by the hydrolysis of trichlorosilanes. But the product obtained by the hydrolysis of only trichlorosilanes are highly cross-linked and unsuitable for normal applications. Therefore, a blend of tri- and dichlorosilanes are hydrolysed to obtain the desired product. [Pg.208]

The chemistry of silicone halides was recently reviewed by Collins.13 The primary use for SiCU is in the manufacturing of fumed silica, but it is also used in the manufacture of polycrystalline silicon for the semiconductor industry. It is also commonly used in the synthesis of silicate esters. T richlorosilane (another important product of the reaction of silicon or silicon alloys with chlorine) is primarily used in the manufacture of semiconductor-grade silicon, and in the synthesis of organotrichlorosilane by the hydrosilylation reactions. The silicon halohydrides are particularly useful intermediate chemicals because of their ability to add to alkenes, allowing the production of a broad range of alkyl- and functional alkyltrihalosilanes. These alkylsilanes have important commercial value as monomers, and are also used in the production of silicon fluids and resins. On the other hand, trichlorosilane is a basic precursor to the synthesis of functional silsesquioxanes and other highly branched siloxane structures. [Pg.653]

Reduction of the diazaphospholines (151) by trichlorosilane yields a mixture of cis- (Ra = H, R3 = Ph) and trans- (R2 = Ph, R3 = H) phosphines, the lack of stereospecificity being attributed to changes in a pentaco-ordinate intermediate. Stereomutation of the starting oxide is brought about by hexachlorodisilane or silicon tetrachloride.118... [Pg.128]

The ionization of silicon tetraiodide by pyridine has been mentioned above. Trichlorosilane is known to undergo ionization with amines in solution of acetonitrile 39) ... [Pg.84]


See other pages where Silicon trichlorosilane is mentioned: [Pg.20]    [Pg.161]    [Pg.20]    [Pg.161]    [Pg.826]    [Pg.889]    [Pg.87]    [Pg.17]    [Pg.20]    [Pg.23]    [Pg.403]    [Pg.2]    [Pg.76]    [Pg.54]    [Pg.145]    [Pg.165]    [Pg.167]    [Pg.170]    [Pg.83]    [Pg.821]    [Pg.433]    [Pg.824]    [Pg.582]    [Pg.659]    [Pg.675]    [Pg.267]    [Pg.55]   
See also in sourсe #XX -- [ Pg.349 ]




SEARCH



Trichlorosilane

Trichlorosilanes

© 2024 chempedia.info